Clausius-Clapeyron equation and absorbed heat

AI Thread Summary
The discussion focuses on the Clausius-Clapeyron equation, emphasizing the relationship between absorbed heat during vaporization and the work done in a Carnot cycle. It highlights that the efficiency of the cycle can be expressed as η = dp(Vg - Vℓ) / nλ, leading to the derivation of dp/dT = nλ / T(Vg - Vℓ). A key point raised is the omission of the work done during isothermobaric expansion in the heat balance, despite its significant contribution. The conversation clarifies that the heat of vaporization inherently includes expansion work, even in scenarios like open vessels under pressure. Overall, the discussion underscores the importance of considering both vaporization and expansion in thermodynamic calculations.
MaxLinus
Messages
5
Reaction score
0
Homework Statement
Work out the Clausius-Clapeyron equation using the efficiency of a Carnot cycle.
Relevant Equations
Clausius-Clapeyron equation; Carnot efficiency
In working out the Clausius-Clapeyron equation in an elementary method, we usually consider the work done in a Carnot cycle, built with two isothermobarics at ##p## , ##T## and ##p- dp##,##T-dT## pressures and temperatures and two adiabatics, as ##\mathcal{L} = dp(V_g - V_\ell)##, where ##V_g## is the volume of ##n## vaporized moles and ##V_\ell## is their volume in the liquid phase. The heat absorbed in the isothermobaric vaporization is usually set to ##Q_a = n \lambda##, where ##\lambda## is the molar latent heat of vaporization. So the efficiency is ##\eta =\frac{\mathcal{L}}{Q_a} = \frac{dp(V_g - V_\ell)} {n \lambda}##. Then the solution is easy: the efficiency must be equal to ##dT/T## (Carnot cycle), and you get
$$ \frac{dp}{dT} = \frac{n \lambda}{T(V_g - V_\ell)} $$But why the work ##\mathcal{L}_1 = p (V_g - V_\ell)## done in the isothermobaric expansion is not considered in the balance? The heat absorbed should account for vaporization and for expansion, whose effect appears not so easily neglibile: latent heat of water is about ##2 \, MJ/kg##, while an expansion of ##V_g - V_\ell = 1 \, m^3## (not an exaggerated value) at atmospheric pressure (##\sim 100 \, kPa ##) should contribute with approximately ##100 \, kJ \sim 0.1 \, MJ##.
 
Physics news on Phys.org
MaxLinus said:
The heat absorbed should account for vaporization and for expansion
If I'm understanding it correctly, the definition of heat of vaporization does include the expansion work ##p(V_g-V_l)##. For example, see the definitions here and here.
 
Ok. The first link you posted states it very clearly.
Many thanks.
 
Back again, just a bit.
In first problems about calorimetry, we usually do not deal with volumes, but only with moles and masses. Yet, vaporization takes place at a definite pressure. So, if I understand correctly your hint, we can still define a work in the expansion even if it occurs (for example) in an open vessel, but in an environment with pressure. Something related to partial volumes ...
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top