Clay falling onto a pan attached to a vertical spring

Click For Summary
A spring is attached to a ceiling with a pan that stretches 5 cm when a 100 g mass is placed on it. The problem involves a 120 g lump of clay dropped from 40 cm onto the pan, and the goal is to find the maximum distance the pan moves downward. The correct answer is 0.233 meters, but the student struggles to reach this result using conservation of momentum and mechanical energy equations. Key points in the discussion include the importance of including gravitational force and spring potential energy in calculations. The student acknowledges missing elements in their equations and seeks clarification on achieving the correct answer.
ultimateman
Messages
7
Reaction score
0

Homework Statement



"A spring is hung from the ceiling. A pan of mass 100.0 g is attached to the end, which causes it to stretch 5.00 cm. Find the maximum distance the pan moves downward when a lump of clay of mass 120.0 g is dropped from a height of 40.0 cm onto the pan."

The correct answer, according to my teacher is 0.233 meters.

Homework Equations



Conservation of momentum, perfectly inelastic collision.

m1v1i + m2v2i = (m1 + m2)vf

Conservation of mechanical energy.

MEi = MEf

PEg = mgh
PEe = 1/2 kx^2
KE = 1/2 mv^2

Work kinetic energy theorem.

Fnet d cosθ = 1/2 m (vf^2 - vi^2)

The Attempt at a Solution



I tried a perfectly inelastic conservation of momentum + work-KE theorem approach.

m(ball)v0 + 0 = M(combined)v(final)

Fnet d cos(θ) = 1/2 M(vf^2 - vi^2)

where Fnet was the average spring force minus gravity, F = [k(0.05) + k(x)] / 2 - M(combined)g

d was (x+0.05)

and vf = 0, vi = root(2gh)

UPDATE:

OK so I tried conservation of mechanical energy after the collision to no avail. I did:

1/2 (.22kg) (1.53 m/s)^2 + (.22 kg)(9.81) x = 1/2 (19.62 N/m) (x+0.05)^2

Solving for x I got x = 0.225 m.

I still can't get x = 0.233m. I'm sure it's not a rounding error of some sort. What am I missing?
 
Last edited:
Physics news on Phys.org
ultimateman said:
I have tried using a conservation of energy approach. This equation looked like:

PEg(ball) + PEg(pan) + PEe(spring) = PEe(spring, (x+0.05))
Mechanical energy is not conserved during the collision, so that won't work.

I also tried a perfectly inelastic conservation of momentum + work-KE theorem approach.

m(ball)v0 + 0 = M(combined)v(final)
So far so good.

Fnet d cos(θ) = 1/2 M(vf^2 - vi^2)

where Fnet was the average spring force, F = [k(0.05) + k(x)] / 2

d was x

and vf = 0, vi = root(2gh)
You forgot about gravity.

Hint: After the collision, mechanical energy is conserved.
 
Actually I forgot to include gravity in my attempted solution post, but I did include it in my actual calculations already and I still got the wrong answer. : / But Fnet was the average spring force and gravity.

Thanks for pointing out that mechanical energy is not conserved during the collision. Obviously I should have seen that with it being perfectly inelastic.

Trying conservation of mechanical energy after the collision.

EDIT: OK so I tried conservation of mechanical energy after the collision to no avail. I did:

1/2 (.22kg) (1.53 m/s)^2 + (.22 kg)(9.81) x = 1/2 (19.62 N/m) (x+0.05)^2

Solving for x I got x = 0.225 m.

I still can't get x = 0.233m. I'm sure it's not a rounding error of some sort. What am I missing?
 
Last edited:
ultimateman said:
EDIT: OK so I tried conservation of mechanical energy after the collision to no avail. I did:

1/2 (.22kg) (1.53 m/s)^2 + (.22 kg)(9.81) x = 1/2 (19.62 N/m) (x+0.05)^2

Solving for x I got x = 0.225 m.

I still can't get x = 0.233m. I'm sure it's not a rounding error of some sort. What am I missing?
The left side of your equation is incomplete. You forgot the spring potential energy.
 
Doc Al said:
The left side of your equation is incomplete. You forgot the spring potential energy.

Derp...Ty!
 
Thread 'Correct statement about size of wire to produce larger extension'
The answer is (B) but I don't really understand why. Based on formula of Young Modulus: $$x=\frac{FL}{AE}$$ The second wire made of the same material so it means they have same Young Modulus. Larger extension means larger value of ##x## so to get larger value of ##x## we can increase ##F## and ##L## and decrease ##A## I am not sure whether there is change in ##F## for first and second wire so I will just assume ##F## does not change. It leaves (B) and (C) as possible options so why is (C)...

Similar threads

Replies
11
Views
3K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 20 ·
Replies
20
Views
4K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K