MHB Clearing fractions with row operations.

Click For Summary
Row operations in linear algebra include adding two rows, multiplying a row by a constant, and adding a multiple of one row to another. Multiplying a row by a constant can be used to clear fractions at any point, as long as the goal is to achieve row echelon form. However, the upper triangular and row-echelon forms of a matrix are not unique, while the reduced row-echelon forms are unique. Discrepancies in results from software versus manual calculations may arise, but achieving the same reduced row-echelon form indicates correctness. Understanding these concepts is crucial for mastering Gauss elimination and linear algebra.
skoker
Messages
10
Reaction score
0
i know you have the 3 row operations. add two rows. multiply a row by a constant. add a multiple of a row to another.

my question is can you multiply a row by a constant to clear a fraction at any time so long as you end up in row echelon form. no matter what operations you do the result in row echelon form will be unique?

i am checking my work with a software and when i do fraction free result it comes up with a different Gauss elimination then i do. but then when i put all the pivots to 1 for row echelon its the same result. is this going to give me problems in other thing? maybe where a Gauss elimination has to be unique?
 
Physics news on Phys.org
Re: clearing fractions with row opperations.

so i think i figured it out. sorry if this is so basic, i just started in the linear algebra book.
i was doing the \( 3 \times 3, \; A^{-1} \) with Gauss elimination by hand and always getting it wrong.
 
Last edited:
Re: clearing fractions with row opperations.

to answer your original question, the upper triangular and row-echelon forms of a matrix are not unique. the reduced row-echelon forms are, however.
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
3
Views
1K
  • · Replies 9 ·
Replies
9
Views
5K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K