First I am in [itex]\mathbb{R}[/itex] with the standard metric [d(x,y)=|y-x|]. Is [itex][0,\infty)[/itex] considered a closed set? I would think yes, since I would consider [itex](-\infty,0)[/itex] to be an open set. However, I can't seem to find any examples like this in our book, and I have yet to be able to find anything online either to clarify this. I guess I am not sure how to deal with infinity. Thoughts? Thanks!(adsbygoogle = window.adsbygoogle || []).push({});

edit... Last time I posted part of a question people wanted to see the whole thing.

So here is the question: Let [itex](\mathbb{R},d)[/itex] be the real line with the standard metric. Give an example of a continuous function [itex]f:\mathbb{R}\to\mathbb{R}[/itex], and a closed set [itex]F\subseteq \mathbb{R}[/itex], such that [itex]f(F) = \{f(x) : x \in F\}[/itex] is not closed.

So I was thinking of taking [itex]f(x)=e^x[/itex] and taking [itex](-\infty,0][/itex] as my closed set. Since that would be mapped into [itex](0,1][/itex] which is not closed. Here arises my question of is [itex](-\infty,0][/itex] closed.

Also, if you have any insightful examples for this question, I would love to see them. Thanks!

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Closed sets - Simple question, if you know the answer.

**Physics Forums | Science Articles, Homework Help, Discussion**