MHB Coefficient in a Laurent Expansion in terms of an Integral

Click For Summary
The discussion focuses on finding the coefficient \( C_n \) in the Laurent expansion of the function \( f(z) = \cos(z + \frac{1}{z}) \) around \( z = 0 \). It is established that the coefficient can be expressed as \( C_n = \frac{1}{2\pi} \int_0^{2\pi} \cos(2 \cos u) \cos(n u) \, du \), with the integral being zero for odd \( n \). The reasoning for this involves analyzing the series expansion and recognizing that terms contribute only when \( n \) is even. Participants discuss methods for deriving the result, including contour integration and the use of series expansions. The conversation highlights the analytical properties of the function and the implications for the coefficients in the Laurent series.
shen07
Messages
54
Reaction score
0
Hi guys, i need your help to go about his question,

Question:

$$\text{Show that the coefficient }C_n \text{in the Laurent expansion of }$$
$$f(z)=(z+\frac{1}{z}) \text{ about z=0 is given by}$$
$$C_n=\frac{1}{2\pi}\int^{2\pi}_0 \cos(2cos(\theta))cos(n\theta)\, d\theta ,n\in\mathbb{z}$$
 
Physics news on Phys.org
shen07 said:
Hi guys, i need your help to go about his question,

Question:

$$\text{Show that the coefficient }C_n \text{in the Laurent expansion of }$$
$$f(z)=(z+\frac{1}{z}) \text{ about z=0 is given by}$$
$$C_n=\frac{1}{2\pi}\int^{2\pi}_0 \cos(2cos(\theta))cos(n\theta)\, d\theta ,n\in\mathbb{z}$$

the function is actually $$f(z)=cos(z+z^{-1})$$
 
shen07 said:
the function is actually $$f(z)=cos(z+z^{-1})$$

Hi shen07,

Perhaps you can start by filling in your function into the formula for the Laurent series coefficients?
The formula is:
$$C_n=\frac{1}{2\pi i} \oint_\gamma \frac{f(z)\,\mathrm{d}z}{(z-c)^{n+1}}$$
where the function f(z) is expanded around c and $\gamma$ is a closed counter clockwise curve around c.
 
Let $\gamma$ be the unit circle.

Then since $\gamma$ lies in a annulus in which $ \displaystyle \cos \left( z + \frac{1}{z} \right)$ is analytic,

$ \displaystyle C_{n} = \frac{1}{2\pi i} \int_{\gamma} \frac{\cos (z + \frac{1}{z})}{z^{n+1}} \ dz = \frac{1}{4 \pi i} \int_{\gamma} \frac{e^{i(z + \frac{1}{z})} + e^{-i(z+ \frac{1}{z})}}{z^{n+1}} \ dz $

Parametrize the contour by letting $z = e^{i \theta}$.

$\displaystyle = \frac{1}{4 \pi i} \int_{-\pi}^{\pi} \frac{e^{i (e^{i\theta}+e^{-i\theta})} + e^{i(e^{i\theta}+e^{-i\theta})}}{e^{i(n+1)\theta}} i e^{i\theta} \ d \theta = \frac{1}{4 \pi} \int_{- \pi}^{\pi} \frac{e^{i (2 \cos \theta)} + e^{-i(2 \cos \theta)}}{e^{i n \theta}} \ d \theta$

$ = \displaystyle \frac{1}{2 \pi} \int_{-\pi}^{\pi} \cos(2 \cos \theta) e^{-i n \theta} \ d \theta = \frac{1}{2 \pi} \int_{-\pi}^{\pi} \cos(2 \cos \theta) \cos(n \theta)$ since the imaginary part of the integrand is odd

$ \displaystyle = \frac{(-1)^{n}}{2 \pi} \int_{0}^{2 \pi} \cos(2 \cos u) \cos(n u) \ du$

But since the integral is zero when $n$ is odd,

$ \displaystyle C_{n} = \frac{1}{2 \pi} \int_{0}^{2 \pi} \cos(2 \cos u) \cos(n u) \ \ du$
 
Random Variable said:
$ \displaystyle = \frac{(-1)^{n}}{2 \pi} \int_{0}^{2 \pi} \cos(2 \cos u) \cos(n u) \ du$

But since the integral is zero when $n$ is odd,

How did you deduce that the integral is zero ?
 
ZaidAlyafey said:
How did you deduce that the integral is zero ?

I used magic. And by "magic" I mean Maple.
 
Here's an indirect argument.Let $n$ be an odd integer.$ \displaystyle C_{n} = \frac{1}{2 \pi i} \int_{|z|=1} \frac{\cos (z+ \frac{1}{z})}{z^{n+1}} \ dx = \frac{1}{2 \pi i} \text{Re} \int_{|z|=1} \frac{e^{i(z+\frac{1}{z})}}{z^{n+1}} \ dz = \text{Re} \ \text{Res}\Big[ \frac{e^{i(z+\frac{1}{z})}}{z^{n+1}},0 \Big]$$ \displaystyle \frac{e^{i(z+\frac{1}{z})}}{z^{n+1}} = \frac{1}{z^{n+1}} \sum_{k=0}^{\infty} \frac{[i(z+\frac{1}{z})]^{k}}{k!}= \frac{1}{z^{n+1}} \sum_{k=0}^{\infty} \frac{i^{k}}{k!} \sum_{m=0}^{k} \binom{k}{m} z^{m} \left(\frac{1}{z} \right)^{k-m} $

$ \displaystyle = \sum_{k=0}^{\infty} \frac{i^{k}}{k!} \sum_{m=0}^{k} \binom{k}{m} z^{2m-k-n-1} $We want to the know the coefficient of the $\displaystyle \frac{1}{z}$ term.

So we're only interested when $ \displaystyle m = \frac{k+n}{2}$.

But since $n$ is assumed to be odd, $k$ must also be odd.

But if $k$ can only assume odd values, then every term of the series is imaginary. So $C_{n}$ must be zero when $n$ is odd.
 
Another way would be using

$$\cos(z+z^{-1}) = \cos(z) \cos\left(\frac{1}{z}\right)-\sin(z) \sin \left( \frac{1}{z}\right)=\left(1-\frac{z^2}{2!}+\frac{z^4}{4!}+\cdots \right)\left(1-\frac{1}{2!\,z^2}+\frac{1}{4!\,z^4}+\cdots \right)-\left(z-\frac{z^3}{3!}+\frac{z^5}{5!}\cdots \right)\left(\frac{1}{z}-\frac{1}{3!\,z^3}+\frac{1}{5!\,z^5}+\cdots \right)$$

Evidently all the terms are even . Another way would be using Cauchy product formula.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K