MHB College-_-'s question at Yahoo Answers regarding a volume by slicing

  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Volume
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Volumes of solids of revolution?


I have a problem in calculus 2 the question is:
"Find the volume V of the described solid S.
The base of S is the triangular region with vertices (0, 0), (4, 0), and (0, 4). Cross-sections perpendicular to the y-axis are equilateral triangles."
I drew a picture of the triangle but don't know how to find the volume. I know that because the cross sections are perpendicular to the y-axis that means it is rotated about the y-axis to get the solid and that the equations of the three lines that make up this triangle are y=0, x=0, and y= -x+4. I read the explanation to a similar problem but it made no sense and didn't help me with figuring out the answer to my problem. What's the answer? How do I solve it?

I have posted a link there to this thread so the OP can view my work.
 
Mathematics news on Phys.org
Hello College-_-,

First, I want to say the this is a volume by slicing, nor a solid of revolution. We will be slicing or decomposing this solid into volume elements which are slices in the shape of equilateral triangles.

Slicing perpendicular to the $y$-axis, we find the width of the base area $S$ is the $x$-coordinate of the line along with the hypotenuse lies. Knowing the two intercepts of this line are both $4$, we may use the two-intercept form of a line, and then solve for $x$:

$$\frac{x}{4}+\frac{y}{4}=1$$

$$x+y=4$$

$$x=4-y$$

Now, we wish to find the formula for the area of an equilateral triangle as a function of its side lengths $s$:

$$A=\frac{1}{2}s^2\sin\left(60^{\circ} \right)=\frac{\sqrt{3}}{4}s^2$$

Hence, we may state the volume of an arbitrary slice of the solid as:

$$dV=\frac{\sqrt{3}}{4}(4-y)^2\,dy$$

Summing all the volume elements, we find the volume of the solid is then given by:

$$V=\frac{\sqrt{3}}{4}\int_0^4 (4-y)^2\,dy$$

Let's use the substitution:

$$u=4-y\,\therefore\,du=-dy$$

and we have:

$$V=\frac{\sqrt{3}}{4}\int_0^4 u^2\,du$$

Applying the FTOC, we obtain the volume in units cubed:

$$V=\frac{\sqrt{3}}{4}\left[\frac{u^3}{3} \right]_0^4=\frac{\sqrt{3}}{4}\cdot\frac{4^3}{3}=\frac{16}{\sqrt{3}}$$
 
I'm sure you mean the volume is in CUBIC units, not square :P
 
Prove It said:
I'm sure you mean the volume is in CUBIC units, not square :P

Why yes...yes I did. Thanks for catching that! I have fixed my post above. :D
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top