Combustion Analysis- Empirical and molecular formula

In summary, the conversation was about finding the empirical and molecular formula for menthol, a substance found in mentholated cough drops. Through combustion, the masses of CO2 and H2O produced from a 0.1005 g sample of menthol were given. The correct approach was to find the mass of C, H, and O in the sample, and use their ratios to determine the empirical formula. The molecular formula was then found by using the molar mass of menthol. The resulting formula was C10H20O, with a molar mass of approximately 156 g/mol.f
  • #1
4
1

Homework Statement


Menthol, the substance we can smell
in mentholated cough drops, is composed of C, H, and O. A
0.1005-g sample of menthol is combusted, producing 0.2829 g
of CO2 and 0.1159 g of H2O. What is the empirical formula
for menthol? If menthol has a molar mass of 156 g/mol, what is its molecular formula?.
Book answer:
The empirical and molecular formulas are C 10H20O

2. Homework Equations

Whole-number multiple = molecular weight /empirical formula weight

The Attempt at a Solution



Cant arrive at the same answer. I started off using the masses of the combustion products, in the case of carbon

(0,2829 g CO2 ) (mol CO2 /44,0 g CO2) (mol C/mol CO2) =
0,00643 mol C
As for H and O, I got 0,129 mol and 0,00643 mol respectively. Then comparing the relative number of moles of each element

C: 0,00643/0,00643=1 H: 0,129/0,00643=20 O:0,00643/0,00643 = 1 lead me obtaining CH20O as the empirical formula. What am I doing wrong?
 
  • #3
And 0.00643 mol for O.
 
  • #4
Made a calculation mistake for H, the corrected value is 0,0129

(0,1159 g H2O) (mol H2O/ 18,0 g H2O) (2 mol H/ mol H2O)= 0,0129 mol H

For O, I also noticed that the actual number is closer to 0,00644:
(0,1159 g H2O) (mol H2O/ 18,0 g H2O) ( mol O/ mol H2O) = 0,00644 mol O
 
  • #5
How do you know that all the O in the H2O, and none of that in the CO2, comes from the O in the compound rather than the oxygen in the air? You need to take the equation
aCxHyOz + bO2 → cCO2 + dH2O
and balance it.
 
  • Like
Likes Chestermiller
  • #6
To add to what mjc123 wrote, finding mass of oxygen in the compound is quite easy once you know mass of carbon and hydrogen (and actually doesn't require stoichiometry).
 
  • #7
How do you know that all the O in the H2O, and none of that in the CO2, comes from the O in the compound rather than the oxygen in the air? You need to take the equation
aCxHyOz + bO2 → cCO2 + dH2O
and balance it.

Ok. In order to fill the values for a, c and d, I did these calculations,
Finding the amount of menthol molecules,

(0,1005 g C10H20O ) (mol C10H20O /156,09 G C10H20O) (6,02 X 1023 C10H20O molecules / mol C10H20O ) = 3,88 x 1020 menthol molecules

CO2 molecules
(0,2829 g CO2) (mol CO2/44,0 g CO2 ) (6,02 X 1023 molecules CO2 /mol CO2) = 3,87 X 1021 CO2 molecules
H2O molecules
(0,1159 g H2O) (mol H2O /18,0 g)(6,02 x 1023 water molecules/mol H2O) = 3,88 x 1021 water molecules

Simplifying these number of molecules into the equation (number of water and CO2 molecules is 10 times the amount of menthol molecules) I get

C10H20O + bO2 → 10 CO2 + 10 H2O . Am I on the right track?
 
Last edited:
  • #8
That's cheating, because you are using the formula of menthol in your calculation.
Go back to what Borek said. You have 0.2829g CO2. What mass of C does this contain? It can only have come from the menthol, so this is the mass of C in 0.1005g menthol.
You have 0.1159g water. How much H does this contain? It can only have come from the menthol, so this is the mass of H in 0.1005g menthol.
Now you have the mass of C and H, what is the mass of O in 0.1005g menthol?
Having the mass fractions, convert them into mole fractions, and work out the simplest whole-number ratio.
 
  • #9
What mass of C does this contain? It can only have come from the menthol
How much H does this contain? It can only have come from the menthol

can only have come from the menthol
I think I grasped where the mistake was . So I proceeded to only get the mass amount for C and H.
(0,2829 g CO2)(mol CO2/44,0 g CO2)(mol C/mol CO2 )(12,0 g C/mol C) = 0,0772 g C
(0,1159 g H2O)(mol H2O/18,0 g H2O) (2 mol H/mol H2O)( 1 g H/mol H) = 0,0129 g H
Then substracting the addition of these masses from the menthol to get the amount of O:
(0,1005 g) - (0,0772 + 0,0129) = 0,0104 g O
Obtaining moles and comparing relative numbers
(0,0772 g C)(mol C/ 12,0 g C) = 0,00643 mol C
(0,0129 g H)(mol H/ g H)= 0,0129 mol H
(0,0104 g O)(mol O/16,0 g O)= 0,0006504 mol H

C: 0,00643/0,0006504≈ 10 H: 0,0129/0,0006504≈20 O: 0,0006504/0,0006504=1 giving C10H20O as the empirical formula, with a formula weight of aprox. 156 amu. Then using the relevant equation
156 amu/156 amu=1 indicates C10H20O also being the molecular formula. Thanks for the help.
 

Suggested for: Combustion Analysis- Empirical and molecular formula

Replies
4
Views
449
Replies
1
Views
2K
Replies
1
Views
594
Replies
2
Views
744
Replies
14
Views
2K
Replies
7
Views
456
Replies
4
Views
736
Replies
4
Views
588
Back
Top