Comments - Inflationary Misconceptions and the Basics of Cosmological Horizons

  • Context: Graduate 
  • Thread starter Thread starter bapowell
  • Start date Start date
  • Tags Tags
    Basics Cosmological
Click For Summary

Discussion Overview

The discussion revolves around misconceptions related to inflationary cosmology and the concept of cosmological horizons. Participants explore various interpretations of expanding space, the effectiveness of analogies used to explain these concepts, and the implications of the universe's expansion dynamics.

Discussion Character

  • Exploratory
  • Technical explanation
  • Conceptual clarification
  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • Some participants suggest that viewing "expanding space" as "contracting matter" could provide an equivalent understanding, though they acknowledge this may not be universally accepted.
  • Several participants commend the article for its clarity and accessibility, noting its potential as a resource for newcomers to cosmology.
  • Concerns are raised about the balloon analogy used in cosmology, with some arguing it may lead to misconceptions about space as a physical substance that expands.
  • One participant expresses confusion regarding the relationship between the Hubble radius and the concept of decelerated expansion, questioning whether an increase in the Hubble radius could occur at any velocity.
  • Another participant attempts to clarify the mathematical relationship between the deceleration parameter and the growth rate of the Hubble scale, indicating that accelerated expansion occurs when comoving lengths grow more quickly than the Hubble scale.
  • There are multiple mentions of typos and missing equation numbers in the article, indicating areas for improvement.

Areas of Agreement / Disagreement

Participants express a mix of agreement on the article's clarity while also highlighting areas of contention regarding the interpretations of analogies and the mathematical implications of cosmic expansion. No consensus is reached on the effectiveness of the balloon analogy or the specifics of the Hubble radius discussion.

Contextual Notes

Some participants note limitations in the article, such as missing equation numbers and potential ambiguities in analogies, which may affect understanding. The discussion also reflects varying levels of familiarity with cosmological concepts among participants.

bapowell
Science Advisor
Insights Author
Messages
2,243
Reaction score
261
bapowell submitted a new PF Insights post

Inflationary Misconceptions and the Basics of Cosmological Horizons

CosmologicalHorizons.png


Continue reading the Original PF Insights Post.
 
Last edited by a moderator:
  • Like
Likes   Reactions: ShayanJ, martinbn, marcus and 3 others
Space news on Phys.org
The usefulness of comoving coordinates tells me that "expanding space" may be better viewed as "contracting matter", that "receding galaxies" may be better understood as "contracting galaxies".
Those point of view are probably exactly equivalent, but maybe they are not.
 
Really nice work, Brian. This could be our "go to" essay for a lot of newcomer questions.
 
  • Like
Likes   Reactions: bapowell and Greg Bernhardt
Brian I was thinking how, when answering a question, I could direct somebody to a specific place in your tutorial---like Figure 6 which shows graphically all the events which can have influenced us by time T, and also all the events which we (or our matter starting in ancient times) can have have influenced by time T. Very interesting sets of events to focus on and think about.

There is a footnote #8 right near that figure 6. I wonder if I could use this link, to direct someone to that part of your essay:

https://www.physicsforums.com/insig...nceptions-basics-cosmological-horizons/#back8

Let me see how that works. Yes that works, it jumps right to Figure 6. So that way I wouldn't have to tell the person to read the whole essay, or to go to the start and scroll down to such and such. I could just say "look at this figure". the proximity of the footnote gives a mark to jump to. there may be other ways I don't know about to jump to a specific passage
 
Last edited:
marcus said:
Let me see how that works. Yes that works, it jumps right to Figure 6. So that way I wouldn't have to tell the person to read the whole essay, or to go to the start and scroll down to such and such. I could just say "look at this figure". the proximity of the footnote gives a mark to jump to. there may be other ways I don't know about to jump to a specific passage
Thanks Marcus. This is a good idea. I can easily add linkable tags to figures and such if they end up being useful.
 
Last edited:
Great article! Please allow me a remark regarding the balloon analogy. No doubt, it is a very helpful layman's guide but at the same time eventually a source of a common misunderstanding. Saying "the points separate on account of the expanding rubber" possible supports a laymen's notion to understand space as a sort of substance which expands physically. The analogy shows increasing distances perfectly, but perhaps one should clarify the role of the rubber.
 
Last edited:
In the introduction you said, “…but my goal is to present the key ideas at a popular level, without assuming any prior understanding of cosmology.” In my view you’ve accomplished that, at least to the degree possible for someone with no physics or math background. My first read has already clarified several concepts for me. Thank you.
 
  • Like
Likes   Reactions: bapowell
timmdeeg said:
Great article! Please allow me a remark regarding the balloon analogy. No doubt, it is a very helpful layman's guide but at the same time eventually a source of a common misunderstanding. Saying "the points separate on account of the expanding rubber" possible supports a laymen's notion to understand space as a sort of substance which expands physically. The analogy shows increasing distances perfectly, but perhaps one should clarify the role of the rubber.
Good point timmdeeg. I've added a footnote warning against this pitfall.
 
  • #10
Very useful, even though I've read D&L (a long time ago). Thanks!

Some typos, the most visible in the equation below fig. 4, and as you note by my circumstantial reference, the equation numbers are missing (re using this article as a reference).

I know this is a matter of taste and hence opinion, but the balloon analogy never did anything for me. The first time I met it it was used to discuss the then unknown topology of the universe and to make away with the question of a boundary. Very confusing at the time, which is why I prefer the 3D risin' raisin bread analogy instead even though the analogy breaks down re boundaries.
 
  • #11
timmdeeg said:
Great article! Please allow me a remark regarding the balloon analogy. No doubt, it is a very helpful layman's guide but at the same time eventually a source of a common misunderstanding. Saying "the points separate on account of the expanding rubber" possible supports a laymen's notion to understand space as a sort of substance which expands physically. The analogy shows increasing distances perfectly, but perhaps one should clarify the role of the rubber.
You might find it informative to check out the link in my signature
 
  • #12
Great article! I'm really a novice at this, forgive me. At some point, would the expansion reverse to a contraction?
 
  • #13
S Buschmann said:
Great article! I'm really a novice at this, forgive me. At some point, would the expansion reverse to a contraction?
It certainly could, but that does not appear to be on the menu. For the last 9 billion years or so, the universe has been undergoing an accelerated expansion with no change of pace in sight.
 
  • Like
Likes   Reactions: S Buschmann
  • #14
phinds said:
You might find it informative to check out the link in my signature
Agreed: No Stretching (!) :smile:
 
  • #15
Great article!...If I can just remember where I bookmarked it, it should save PF a few tortuous threads on the relative speeds of objects within colliding bubble universes. (My parenthesizing and underlining fingers thank you, too.)
 
  • Like
Likes   Reactions: bapowell and Greg Bernhardt
  • #16
A very nice and clear article which definitely helps me understand things better.

A small thing that confused me though is the following quote:
"The result dH > c is the hallmark of decelerated expansion"

Wouldn't an increase of the Hubble radius with ANY velocity, not just > c, mean a decelerating expansion?

I'm a real novice at this.
 
  • #17
Thanks for the comment JohnnyGui. If you look at the equation above Fig. 3 (yes, I know, no equation numbers!), \dot{d}_H = c(q+1), where q is the deceleration parameter, you'll see that when -1 < q < 0 -- when the universe is accelerating -- the Hubble scale grows at a rate smaller than c (and conversely). A good way to think about decelerated expansion is that comoving lengths (the size of spacings on an expanding grid) grow more slowly than the Hubble scale (this is identical to the statement that \dot{d}_H > c (since points with r = d_H have v_{rec} = c and the only way for the Hubble scale to overtake them is if it itself is growing at a rate greater than c)). On the other hand, if \dot{d}_H < c, that means that comoving lengths are growing more quickly than the Hubble scale: this is accelerated expansion.
 
  • #18
bapowell said:
Thanks for the comment JohnnyGui. If you look at the equation above Fig. 3 (yes, I know, no equation numbers!), \dot{d}_H = c(q+1), where q is the deceleration parameter, you'll see that when -1 < q < 0 -- when the universe is accelerating -- the Hubble scale grows at a rate smaller than c (and conversely). A good way to think about decelerated expansion is that comoving lengths (the size of spacings on an expanding grid) grow more slowly than the Hubble scale (this is identical to the statement that \dot{d}_H > c (since points with r = d_H have v_{rec} = c and the only way for the Hubble scale to overtake them is if it itself is growing at a rate greater than c)). On the other hand, if \dot{d}_H < c, that means that comoving lengths are growing more quickly than the Hubble scale: this is accelerated expansion.

I'm probably missing something here, but how can the Hubble radius grow faster than c if its very own limit (dH) is determined by c?
How I see it, the only way to let the Hubble radius grow at a larger rate is to make the recession velocity (i.e. the growing rate of the comoving distance) of the objects behind it ≤ c but I can't see how that translates into a \dot{d}_H > c. Decelerating an object to ≤ c doesn't make the Hubble radius go any faster than c is what I would think.

Sorry for my misunderstanding.
 
Last edited:
  • #19
JohnnyGui said:
I'm probably missing something here, but how can the Hubble radius grow faster than c if its very own limit (dH) is determined by c?
Good question. The key here is that the Hubble radius is not itself a comoving object, receding with the expansion: one does not apply Hubble's Law to the Hubble radius itself. You can think of it merely as a speed limit marker that is moving faster than the speed limit it is imposing on comoving objects.
 
  • #20
bapowell said:
Good question. The key here is that the Hubble radius is not itself a comoving object, receding with the expansion: one does not apply Hubble's Law to the Hubble radius itself. You can think of it merely as a speed limit marker that is moving faster than the speed limit it is imposing on comoving objects.

Is it correct if I say that relative to Earth (physical distance), the Hubble radius is always traveling/expanding at c? And if the expansion of the universe is decelerating, more objects fall into the Hubble radius while with acceleration objects escape out of the Hubble radius? If so, relative to what does the Hubble radius travel faster than c in a decelerating scenario?
 
  • #21
JohnnyGui said:
And if the expansion of the universe is decelerating, more objects fall into the Hubble radius while with acceleration objects escape out of the Hubble radius? If so, relative to what does the Hubble radius travel faster than c in a decelerating scenario?
Relative to Earth. But perhaps it's easier to think of decelerated expansion as comoving length scales growing relative to the Hubble scale. That way we avoid worrying about defining relative velocities.
 
  • #22
Typo (first tag should be an opening one):

gets pushed out to [/itex]\tau=−\infty[/itex]
 
  • Like
Likes   Reactions: bapowell
  • #23
Nice article! One question: why exactly is one allowed to add the two velocities due to own movement and space expansion a la Galilei, i.e. in a linear way?
 
  • #24
Thanks for the great article. I'm only just an interested layman and not very good with the math, but your article helps to understand a lot of the confusion I found myself in when starting to learn about cosmology.

However there is one thing that is still confusing me which I was hoping you might help clear up:
Because this galaxy and the light it emits are being swept away from us by the expansion of space, it would indeed seem like this galaxy is forever unobservable. But that would be wrong. Many people make this mistake, including many cosmologists.

I've recently been watching the Stanford lectures on cosmology by Leonard Susskind and in those lectures he quite clearly states that once a galaxy starts to recede faster than c then it will be gone forever. In fact he goes on to say the in our very future universe the only light we will see is from our own galaxy, as everything else will be gone.

As I currently understand the expansion rate of the universe, it is accelerating, and it's the rate of acceleration which is decreasing, which will eventually slow to become a constant rate of acceleration. But the expansion rate is always going to be accelerating and never decelerating, at least not in terms where the recession velocity of a given distant galaxy can ever become smaller than it's current value.

So once the rate of expansion of a distant galaxy exceeds c, it will never slow to a recession velocity of less than c. So I am struggling to see how light emitted from a galaxy that is receding from us >c can ever reach us?
 
  • #25
bapowell said:
For the last 9 billion years or so, the universe has been undergoing an accelerated expansion with no change of pace in sight.

Isn't this usually described as 4 or 5 billion years ago...??
 
  • #26
rede96 said:
I've recently been watching the Stanford lectures on cosmology by Leonard Susskind and in those lectures he quite clearly states that once a galaxy starts to recede faster than c then it will be gone forever.

I may be misremembering here, it has been a while, but I think Susskind starts out with a simple model, one that ends up being different than the FLRW cosmological model. If you post a link to the lecture we can take a look.
 
  • #27
alw34 said:
bapowell said:
For the last 9 billion years or so, the universe has been undergoing an accelerated expansion with no change of pace in sight.

Isn't this usually described as 4 or 5 billion years ago...??
Yes, thanks for catching that. Looks like I took the complement.
 
  • #28
alw34 said:
I may be misremembering here, it has been a while, but I think Susskind starts out with a simple model, one that ends up being different than the FLRW cosmological model. If you post a link to the lecture we can take a look.

You might be right, and there are also two sets of lectures. One from 2009 and one from 2013. I'll see if I can find it.
 
  • #29
I found a few notes I made regarding Susskind lecture:


PS: Oopsy daisy...how did the video actually get posted?

"Newtonian derivation of the FRW cosmological model from energy conservation. A Newtonian Cosmological Model…..Does not have ALL the features of a general relativity derivation….and flat special geometry…..k = 0…..[This is a matter dominated Universe model where the particles in the mass box are slowly moving. Universe behaved this way from about 100,000 years after BB to a few billion years of age..]

So it is a simplified model at least in this lecture...
I do really like Susskind lectures.
 
  • #30
alw34 said:
So it is a simplified model at least in this lecture...

Wow, well found! My notes weren't that good. However I did manage to find at least one of the other references he makes to distant galaxies eventually disappearing and we (our galaxy) are left as an isolated island.

I've put the link below, in which he spends the first 30 minutes or so answering questions, but the some key times are:

At 04:46 He starts to talk about relative velocities being greater than c

At 06:20, He goes on to explain the once something is moving away from you at a velocity > c then it can no longer send a message to you. And that any light traveling in your direction is actually moving away from you and thus never reach you.

At 17:25 he starts to talk about expansion of space and talks about modelling expansion as like little bits of space filling in as space expands

At 22:45 he then explains that distant galaxies will someday pass beyond the Hubble horizon and that the Hubble parameter is tending towards a constant at which point the Hubble horizon will become a fix distance.

At around 22:00 he goes on to say that eventually all galaxies (that aren't gravitationally bound to ours) will pass beyond this horizon and be gone forever and will be left as a truly isolated island with future cosmologist having to rely on history to know that the universe is expanding.

There is another session like this in a later lecture, so it isn't just this one reference.

 

Similar threads

  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 10 ·
Replies
10
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 134 ·
5
Replies
134
Views
12K
  • · Replies 10 ·
Replies
10
Views
4K
  • · Replies 15 ·
Replies
15
Views
4K
  • · Replies 6 ·
Replies
6
Views
3K