I Commutation relations for an interacting scalar field

eoghan
Messages
201
Reaction score
7
TL;DR Summary
Why are the commutation relations for interacting fields assumed to be the same as that of free fields?
Hi there,

In his book "Quantum field theory and the standard model", Schwartz assumes that the canonical commutation relations for a free scalar field also apply to interacting fields (page 79, section 7.1). As a justification he states:

This is a natural assumption, since at any given time the Hilbert space for the interacting theory is the same as that of a free theory.

I do not understand this explanation. Can you please elaborate?

I mean, how can the Hilbert space of the interacting theory be the same as the one of the free theory? In an interacting theory, I expect to have different states than in a non interacting theory, so the Hilbert space should be different, isn't it?
 
  • Like
Likes dextercioby, vanhees71 and PeroK
Physics news on Phys.org
eoghan said:
In an interacting theory, I expect to have different states than in a non interacting theory
Not necessarily, just a different Lagrangian. For example, consider a non-interacting theory of electrons and photons. It would have electron states and photon states, with a Lagrangian that had a kinetic term for electrons, a mass term for electrons, and a kinetic term for photons.

If we now add the electron-photon interaction to this theory, we add the QED coupling term to the Lagrangian, but we don't change any states: there are still electron states and photon states. All we have done is introduced new possibilities for transitions between states, such as scattering processes.

eoghan said:
the Hilbert space should be different
Not for the reason you give; but Haag's theorem and related results do, in fact, show that you cannot describe interacting quantum fields using the same Hilbert space that describes free quantum fields. Most treatments of QFT seem to more or less ignore these results and assume that there is some rigorous mathematical basis for the methods they describe.
 
  • Like
Likes eoghan, vanhees71 and PeroK
If you are interested in, why FAPP one can ignore Haag's theorem in the usual perturbative treatment of QFTs, see

A. Duncan, The conceptual framework of quantum field theory, Oxford University Press, Oxford (2012).
 
  • Like
Likes dextercioby
@PeterDonis Very nice answer, now it is clear to me why the Hilbert space (Haag's theorem apart) is supposed to be the same.

@vanhees71 Nice book. I just had a look at its content on Amazon and it's definitely on my list once I will be done with the Schwartz!
 
  • Like
Likes vanhees71 and PeroK
I am not sure if this falls under classical physics or quantum physics or somewhere else (so feel free to put it in the right section), but is there any micro state of the universe one can think of which if evolved under the current laws of nature, inevitably results in outcomes such as a table levitating? That example is just a random one I decided to choose but I'm really asking about any event that would seem like a "miracle" to the ordinary person (i.e. any event that doesn't seem to...
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Back
Top