Commutators of angular momentum, linear momentum squared and H

Click For Summary
The discussion focuses on proving that the commutator of the angular momentum operator ##\hat{\mathbf{L}}## and the square of the linear momentum operator ##\hat{\mathbf{p}}^2## is zero, specifically ##[\hat{\mathbf{L}},\hat{\mathbf{p}}^2] = 0##. The initial attempt involved complex algebra, leading to confusion about the non-zero terms in the calculations. Participants clarified that many terms in the derivatives are indeed zero due to the properties of partial derivatives, simplifying the proof. The discussion also touches on the implication that if the potential is a function of the radial distance, then ##[\hat{\mathbf{L}},\hat{H}] = 0## holds true as well. The conversation emphasizes the importance of recognizing when terms can be dropped in calculations involving commutators.
Mark_L
Messages
3
Reaction score
0

Homework Statement



For the linear momentum operator ##\hat{\mathbf{p}}## and angular momentum operator ##\hat{\mathbf{L}} ##, prove that ##\begin{eqnarray}
[\hat{\mathbf{L}},\hat{\mathbf{p}}^2]&=&0\end{eqnarray}##:

[Hint: Write ##\hat{\mathbf{L}}## as the ##x##-component of the angular momentum operator and evaluate ##[\hat{L}_{x},\hat{\mathbf{p}}^2]\psi##.
The results for the other components will follow by symmetry.]

Hence show that if the potential is given by ##V(|\mathbf{x}|)##, then ##[\hat{\mathbf{L}},\hat{H}] = 0##:

Homework Equations



##\begin{eqnarray}\hat{\mathbf{P}}&=&-i\hbar\nabla\\
\hat{L}_x&=&y\hat{p}_{z}-z\hat{p}_{y}\\
\hat{H}&=&-\frac{\hbar^2}{2m}\nabla^2+V\\
\end{eqnarray}##

The Attempt at a Solution



After some algebra just using ##[A,B]=AB-BA## and substituting the equations above,

##[\hat{L}_{x},\hat{\mathbf{p}}^2]\psi=i\hbar^3y\frac{\partial d}{\partial z}(\nabla^2(\frac{\partial\psi}{\partial z})-i\hbar^3z\nabla^2(\frac{\partial\psi}{\partial y})+i\hbar^3\nabla^2(z\frac{\partial\psi}{\partial y})-i\hbar^3\nabla^2(y\frac{\partial\psi}{\partial z})##

and doing all the derivatives eventually gave ##[\hat{L}_{x},\hat{\mathbf{p}}^2]\psi=i\hbar^3[\frac{\partial^2 z}{\partial x^2}\frac{\partial\psi}{\partial y}+\frac{\partial^2 z}{\partial y^2}\frac{\partial\psi}{\partial y}+2\frac{\partial^2\psi}{\partial x\partial y}\frac{\partial z}{\partial x}+2\frac{\partial^2\psi}{\partial y^2}\frac{\partial z}{\partial y}-\frac{\partial^2 y}{\partial x^2}\frac{\partial\psi}{\partial z}-\frac{\partial^2 y}{\partial z^2}\frac{\partial\psi}{\partial z}-2\frac{\partial^2\psi}{\partial x\partial z}\frac{\partial y}{\partial x}-2\frac{\partial^2\psi}{\partial z^2}\frac{\partial y}{\partial z}]##

But this isn't zero so I'm definitely stuck! I checked all my working and it's definitely all correct so I'm thinking there is a different (hopefully less algebraically intensive) method.

Any help is greatly appreciated, thanks in advance.
 
Physics news on Phys.org
Mark_L said:

Homework Statement



For the linear momentum operator ##\hat{\mathbf{p}}## and angular momentum operator ##\hat{\mathbf{L}} ##, prove that ##\begin{eqnarray}
[\hat{\mathbf{L}},\hat{\mathbf{p}}^2]&=&0\end{eqnarray}##:

[Hint: Write ##\hat{\mathbf{L}}## as the ##x##-component of the angular momentum operator and evaluate ##[\hat{L}_{x},\hat{\mathbf{p}}^2]\psi##.
The results for the other components will follow by symmetry.]

Hence show that if the potential is given by ##V(|\mathbf{x}|)##, then ##[\hat{\mathbf{L}},\hat{H}] = 0##:

Homework Equations



##\begin{eqnarray}\hat{\mathbf{P}}&=&-i\hbar\nabla\\
\hat{L}_x&=&y\hat{p}_{z}-z\hat{p}_{y}\\
\hat{H}&=&-\frac{\hbar^2}{2m}\nabla^2+V\\
\end{eqnarray}##

The Attempt at a Solution



After some algebra just using ##[A,B]=AB-BA## and substituting the equations above,

##[\hat{L}_{x},\hat{\mathbf{p}}^2]\psi=i\hbar^3y\frac{\partial d}{\partial z}(\nabla^2(\frac{\partial\psi}{\partial z})-i\hbar^3z\nabla^2(\frac{\partial\psi}{\partial y})+i\hbar^3\nabla^2(z\frac{\partial\psi}{\partial y})-i\hbar^3\nabla^2(y\frac{\partial\psi}{\partial z})##

and doing all the derivatives eventually gave ##[\hat{L}_{x},\hat{\mathbf{p}}^2]\psi=i\hbar^3[\frac{\partial^2 z}{\partial x^2}\frac{\partial\psi}{\partial y}+\frac{\partial^2 z}{\partial y^2}\frac{\partial\psi}{\partial y}+2\frac{\partial^2\psi}{\partial x\partial y}\frac{\partial z}{\partial x}+2\frac{\partial^2\psi}{\partial y^2}\frac{\partial z}{\partial y}-\frac{\partial^2 y}{\partial x^2}\frac{\partial\psi}{\partial z}-\frac{\partial^2 y}{\partial z^2}\frac{\partial\psi}{\partial z}-2\frac{\partial^2\psi}{\partial x\partial z}\frac{\partial y}{\partial x}-2\frac{\partial^2\psi}{\partial z^2}\frac{\partial y}{\partial z}]##

But this isn't zero so I'm definitely stuck! I checked all my working and it's definitely all correct so I'm thinking there is a different (hopefully less algebraically intensive) method.

Any help is greatly appreciated, thanks in advance.

Yes, it is zero. Things like ##\frac{\partial y}{\partial x}## are zero. Same for all of your second derivatives of coordinates. Only things like ##\frac{\partial x}{\partial x}## aren't zero and that's equal to 1. Aren't they? I think you've been carrying around a lot of terms you could have dropped.
 
Dick said:
Yes, it is zero. Things like ##\frac{\partial y}{\partial x}## are zero. Same for all of your second derivatives of coordinates. Only things like ##\frac{\partial x}{\partial x}## aren't zero and that's equal to 1. Aren't they? I think you've been carrying around a lot of terms you could have dropped.

Why are they zero?
 
Mark_L said:
Why are they zero?

Because it's the partial derivative of y taken with respect to x. In taking a partial derivative with respect to x you hold y and z fixed. So it's the derivative of a constant. I'd look back at the definition of partial derivative.
 
Okay, so what about the next part?

We have ##\hat{H}=\frac{1}{2m}\hat{\mathbf{P^2}}+V##
 

Similar threads

  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 30 ·
2
Replies
30
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K