Compactness Proof w/o Heine-Borel

  • Thread starter Thread starter apalmer3
  • Start date Start date
  • Tags Tags
    Proof
Click For Summary
SUMMARY

This discussion focuses on proving that if K is a compact subset of R^d and F is a closed subset of K, then F is also compact. The proof utilizes the definition of compactness, which states that a set is compact if every open cover has a finite subcover. The participants emphasize the importance of considering open covers specific to F and extending them to include K, while ensuring that the additional sets do not cover F. The conclusion is that F inherits compactness from K through careful selection of open covers.

PREREQUISITES
  • Understanding of compact sets in topology
  • Familiarity with open covers and finite subcovers
  • Knowledge of closed sets and their properties
  • Basic concepts of topology in R^d
NEXT STEPS
  • Study the properties of compact sets in metric spaces
  • Learn about the relationship between closed sets and compactness
  • Explore the concept of open covers and their applications in topology
  • Investigate the Heine-Borel theorem and its implications in real analysis
USEFUL FOR

Mathematicians, students of topology, and anyone interested in understanding the properties of compact and closed sets in the context of real analysis.

apalmer3
Messages
36
Reaction score
0

Homework Statement



Prove directly (i.e., without using the Heine-Borel theorem) that if K \subseteq Rd is compact and F \subseteqK is closed, then F is compact.

Homework Equations



Definition of a Compact Set: A set K is said to be compact if, whenever it is contained in the union of a collection G={Ga} of open sets, then it is also contained in the union of some finite number of the sets in G.


The Attempt at a Solution



I think that I need to be more detailed in this, so any help would be greatly appreciated. :-D

If K is compact, then there exists a finite subcover for every open cover of K. If F \subseteq K, then every open cover of K also covers F. And because K is compact, every open subcover of K is once again a cover for F.

Therefore F is compact.

It seems to me that there has to be more to this proof. Help?
 
Physics news on Phys.org
We want to look at open covers of F. While it's true that every open cover of K is an open cover of F, it isn't necessarily true that these are all possible open covers of F.
 
So, you're saying that I need to pay attention to the open covers that are not open covers of K, even though they're open covers of F, because they are contained in K? That makes sense, I'm just not sure how to approach that case.

Maybe... Because F is closed, for every open cover, there must exist a finite open subcover because it can get infinitely close to F without being equal to or contained in F?

I'm not sure how else to word it.
Thanks.
 
Take an open cover of F, say O_\alpha, which we can assume are open subsets of K. You want to show this has a finite subcover.

Now, this won't necessarily be an open cover of K, but you can get one by adding more sets, specifically, ones that cover the rest of K. Call these P_\beta. Then you can use the fact that K is compact to say that this collection of all O's and P's has a finite subcollection O_1,..,O_m,P_1,...,P_n that covers K. This then clearly covers F as well.

However, remember that you need to find a subset of the O's alone that covers F, ie, you can't use any of the P's to cover part of F. One way to guarantee you won't need any P's to cover F is to pick each P to lie outside of F. Hint: you'll only need one P, and constructing it will use the fact that F is closed.
 
"However, remember that you need to find a subset of the O's alone that covers F, ie, you can't use any of the P's to cover part of F. One way to guarantee you won't need any P's to cover F is to pick each P to lie outside of F. Hint: you'll only need one P, and constructing it will use the fact that F is closed."


This is what I was attempting to do. Unfortunately, my trouble is in wording this type of thing. How do I use the fact that F is closed to write a rigid proof? I want to say that because F is closed, all covers and subcovers must be open, and for any given cover, there exists another cover that is even smaller than the first (a subcover), because F is closed. Is there a better way to phrase this?
 
I think you may be over thinking the problem. You have an open cover of F. So you've covered everything K except for the stuff outside of F. What's the "simplest" open set that covers that stuff? Note that up till now you haven't used ANY of the assumptions you've made.
 
I think that that comment right there might have helped. :-D

Because F \subseteq K, the open covers of K also cover F. Let's take a look at the covers of F that do not also cover K. One such cover is the complement of F within K, which can be written as K\F. This is open because it is the complement of a closed set. Because this is an open covering of F within K with finite subcovers, we know that F is compact.

Yes? And thank you.
 
I think you have the right idea, but you seem to be stating it poorly. For one, K - F certainly isn't an open cover of K: It doesn't cover F. But an open cover of F along with K - F (or just F' if you want) is an open cover of K.

Also, from a purely aesthetic point of view, it's probably better to just start with an open cover of F (either in the relative topology or in the topology of the ambient space) and extend it as indicated. That way you don't have to deal with cases.
 

Similar threads

  • · Replies 12 ·
Replies
12
Views
2K
Replies
12
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 9 ·
Replies
9
Views
7K
  • · Replies 14 ·
Replies
14
Views
2K
Replies
1
Views
3K
  • · Replies 10 ·
Replies
10
Views
5K
  • · Replies 4 ·
Replies
4
Views
11K
Replies
1
Views
2K