Compactness Theorem: Intersection of Compact Sets

Click For Summary
SUMMARY

The Compactness Theorem states that for a collection of compact subsets $$\mathbb{K}_{\alpha}$$ in a metric space $$X$$, if every finite intersection of these subsets is nonempty, then the intersection of the entire collection $$\cap \mathbb{K}_{\alpha}$$ is also nonempty. This theorem is discussed in "Principles of Mathematical Analysis" by Walter Rudin. A proof is provided that utilizes the properties of compact and closed sets in a Hausdorff space, demonstrating that the finite intersection property guarantees a nonempty intersection for the entire collection.

PREREQUISITES
  • Understanding of compact sets in metric spaces
  • Familiarity with Hausdorff spaces
  • Knowledge of open and closed sets in topology
  • Basic proficiency in mathematical notation and proofs
NEXT STEPS
  • Study the properties of compact sets in metric spaces
  • Learn about Hausdorff spaces and their significance in topology
  • Explore the concept of the finite intersection property in set theory
  • Review proofs of theorems related to compactness in "Principles of Mathematical Analysis" by Walter Rudin
USEFUL FOR

Mathematicians, students of analysis, and anyone studying topology who seeks to understand the implications of the Compactness Theorem and its applications in mathematical proofs.

alyafey22
Gold Member
MHB
Messages
1,556
Reaction score
2
In the Principles of Mathematical analysis by Rudin we have the following theorem

If $$\mathbb{K}_{\alpha}$$ is a collection of compact subsets of a metric space $$X$$ such that the intersection of every finite sub collection of $$\mathbb{K}_{\alpha}$$ is nonempty , then $$\cap\, \mathbb{K}_{\alpha} $$ is nonempty .

If I understand correctly then this theorem states that if any finite intersection is nonempty then any arbitrarily intersection is also nonempty , right ?. I was trying to understand the proof but it wasn't so clear for me :confused:.
 
Physics news on Phys.org
ZaidAlyafey said:
In the Principles of Mathematical analysis by Rudin we have the following theorem

If $$\mathbb{K}_{\alpha}$$ is a collection of compact subsets of a metric space $$X$$ such that the intersection of every finite sub collection of $$\mathbb{K}_{\alpha}$$ is nonempty , then $$\cap\, \mathbb{K}_{\alpha} $$ is nonempty .

If I understand correctly then this theorem states that if any finite intersection is nonempty then any arbitrarily intersection is also nonempty , right ?. I was trying to understand the proof but it wasn't so clear for me :confused:.
Hello Zaid.

Can you point out where in the book is this theorem given?
 
I worked out a proof which I think is easy to understand.

We prove a more general result which is:

Let $\mathcal K=\{K_\alpha\}_{\alpha\in J}$ be a family of compact subsets of a Hausdorff space $C$ having the finite intersection property, that is, intersection of any finite subfamily of $\mathcal K$ is non-empty, then $\bigcap_{\alpha\in J} K_\alpha\neq \emptyset$.

Fix $\alpha_0\in J$ and define $C_\beta=K_{\alpha_0}\cap K_\beta$ for all $\beta\in J$. Its easy to show that each $C_\beta$ is a closed subset of $K_{\alpha_0}$ by noting that each $K_\alpha$ is a closed subset of $X$ since compact subsets of Hausdorff spaces are closed. Now clearly $\{C_\beta\}_{\beta\in J}$ has finite intersection property as subspaces of $K_{\alpha_0}$. Since $K_{\alpha_0}$ is compact and each $C_\beta$ is closed in $K_{\alpha_0}$ we know that $\bigcap_{\beta\in J}C_\beta\neq\emptyset$. This leads to the required result.
 
ZaidAlyafey said:
If $$\mathbb{K}_{\alpha}$$ is a collection of compact subsets of a metric space $$X$$ such that the intersection of every finite sub collection of $$\mathbb{K}_{\alpha}$$ is nonempty , then $$\cap\, \mathbb{K}_{\alpha} $$ is nonempty.

I don't know which are your doubts. Here is the Rudin's proof (I've added some details):

Consider an element $K_1$ of $\{K_{\alpha}\}$. Suppose $\bigcap K_{\alpha}=\emptyset$ and denote $G_{\alpha}=K_{\alpha}^c$. Then, there in no point in $K_1$ belonging to all $K_{\alpha}$, so $\{G_{\alpha}\}$ is an open cover of $K_1$ (on a metric space every compact set is closed). As $K_1$ is compact there is a finite subcover $\{G_{\alpha_1},\ldots,G_{\alpha_n}\}$ of $\{G_{\alpha}\}$ such that $K_1\subset G_{\alpha_1}\cup\ldots\cup G_{\alpha_n}$. But this implies:
$$K_{1}\cap K_{\alpha_1}\cap\ldots\cap K_{\alpha_n}=\emptyset$$
(contradiction with the hypothesis).
 
Fernando Revilla said:
I don't know which are your doubts. Here is the Rudin's proof (I've added some details):

Consider an element $K_1$ of $\{K_{\alpha}\}$. Suppose $\bigcap K_{\alpha}=\emptyset$ and denote $G_{\alpha}=K_{\alpha}^c$. Then, there in no point in $K_1$ belonging to all $K_{\alpha}$, so $\{G_{\alpha}\}$ is an open cover of $K_1$ (on a metric space every compact set is closed). As $K_1$ is compact there is a finite subcover $\{G_{\alpha_1},\ldots,G_{\alpha_n}\}$ of $\{G_{\alpha}\}$ such that $K_1\subset G_{\alpha_1}\cup\ldots\cup G_{\alpha_n}$. But this implies:
$$K_{1}\cap K_{\alpha_1}\cap\ldots\cap K_{\alpha_n}=\emptyset$$
(contradiction with the hypothesis).

I know that the proof is easy but I might find difficulties in the notations , first what does
$G_{\alpha}=K_{\alpha}^c$ , is this the complement of each compact set ? so since compact sets are closed the complement works as an open cover ?
 
ZaidAlyafey said:
I know that the proof is easy but I might find difficulties in the notations , first what does
$G_{\alpha}=K_{\alpha}^c$ , is this the complement of each compact set ? so since compact sets are closed the complement works as an open cover ?

Right.
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
6K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
2K
  • · Replies 24 ·
Replies
24
Views
3K
Replies
2
Views
2K
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K