MHB Compactness Theorem: Intersection of Compact Sets

Click For Summary
The Compactness Theorem states that if a collection of compact subsets in a metric space has the property that every finite intersection is nonempty, then the intersection of the entire collection is also nonempty. A proof involves showing that if the intersection were empty, it would lead to a contradiction by forming an open cover from the complements of the compact sets. The discussion also highlights the need for clarity in notation, particularly regarding the complement of compact sets, which are closed in a Hausdorff space. Understanding these concepts is crucial for grasping the proof and implications of the theorem. The theorem underscores the importance of compactness in topology and its role in ensuring nonempty intersections.
alyafey22
Gold Member
MHB
Messages
1,556
Reaction score
2
In the Principles of Mathematical analysis by Rudin we have the following theorem

If $$\mathbb{K}_{\alpha}$$ is a collection of compact subsets of a metric space $$X$$ such that the intersection of every finite sub collection of $$\mathbb{K}_{\alpha}$$ is nonempty , then $$\cap\, \mathbb{K}_{\alpha} $$ is nonempty .

If I understand correctly then this theorem states that if any finite intersection is nonempty then any arbitrarily intersection is also nonempty , right ?. I was trying to understand the proof but it wasn't so clear for me :confused:.
 
Physics news on Phys.org
ZaidAlyafey said:
In the Principles of Mathematical analysis by Rudin we have the following theorem

If $$\mathbb{K}_{\alpha}$$ is a collection of compact subsets of a metric space $$X$$ such that the intersection of every finite sub collection of $$\mathbb{K}_{\alpha}$$ is nonempty , then $$\cap\, \mathbb{K}_{\alpha} $$ is nonempty .

If I understand correctly then this theorem states that if any finite intersection is nonempty then any arbitrarily intersection is also nonempty , right ?. I was trying to understand the proof but it wasn't so clear for me :confused:.
Hello Zaid.

Can you point out where in the book is this theorem given?
 
I worked out a proof which I think is easy to understand.

We prove a more general result which is:

Let $\mathcal K=\{K_\alpha\}_{\alpha\in J}$ be a family of compact subsets of a Hausdorff space $C$ having the finite intersection property, that is, intersection of any finite subfamily of $\mathcal K$ is non-empty, then $\bigcap_{\alpha\in J} K_\alpha\neq \emptyset$.

Fix $\alpha_0\in J$ and define $C_\beta=K_{\alpha_0}\cap K_\beta$ for all $\beta\in J$. Its easy to show that each $C_\beta$ is a closed subset of $K_{\alpha_0}$ by noting that each $K_\alpha$ is a closed subset of $X$ since compact subsets of Hausdorff spaces are closed. Now clearly $\{C_\beta\}_{\beta\in J}$ has finite intersection property as subspaces of $K_{\alpha_0}$. Since $K_{\alpha_0}$ is compact and each $C_\beta$ is closed in $K_{\alpha_0}$ we know that $\bigcap_{\beta\in J}C_\beta\neq\emptyset$. This leads to the required result.
 
ZaidAlyafey said:
If $$\mathbb{K}_{\alpha}$$ is a collection of compact subsets of a metric space $$X$$ such that the intersection of every finite sub collection of $$\mathbb{K}_{\alpha}$$ is nonempty , then $$\cap\, \mathbb{K}_{\alpha} $$ is nonempty.

I don't know which are your doubts. Here is the Rudin's proof (I've added some details):

Consider an element $K_1$ of $\{K_{\alpha}\}$. Suppose $\bigcap K_{\alpha}=\emptyset$ and denote $G_{\alpha}=K_{\alpha}^c$. Then, there in no point in $K_1$ belonging to all $K_{\alpha}$, so $\{G_{\alpha}\}$ is an open cover of $K_1$ (on a metric space every compact set is closed). As $K_1$ is compact there is a finite subcover $\{G_{\alpha_1},\ldots,G_{\alpha_n}\}$ of $\{G_{\alpha}\}$ such that $K_1\subset G_{\alpha_1}\cup\ldots\cup G_{\alpha_n}$. But this implies:
$$K_{1}\cap K_{\alpha_1}\cap\ldots\cap K_{\alpha_n}=\emptyset$$
(contradiction with the hypothesis).
 
Fernando Revilla said:
I don't know which are your doubts. Here is the Rudin's proof (I've added some details):

Consider an element $K_1$ of $\{K_{\alpha}\}$. Suppose $\bigcap K_{\alpha}=\emptyset$ and denote $G_{\alpha}=K_{\alpha}^c$. Then, there in no point in $K_1$ belonging to all $K_{\alpha}$, so $\{G_{\alpha}\}$ is an open cover of $K_1$ (on a metric space every compact set is closed). As $K_1$ is compact there is a finite subcover $\{G_{\alpha_1},\ldots,G_{\alpha_n}\}$ of $\{G_{\alpha}\}$ such that $K_1\subset G_{\alpha_1}\cup\ldots\cup G_{\alpha_n}$. But this implies:
$$K_{1}\cap K_{\alpha_1}\cap\ldots\cap K_{\alpha_n}=\emptyset$$
(contradiction with the hypothesis).

I know that the proof is easy but I might find difficulties in the notations , first what does
$G_{\alpha}=K_{\alpha}^c$ , is this the complement of each compact set ? so since compact sets are closed the complement works as an open cover ?
 
ZaidAlyafey said:
I know that the proof is easy but I might find difficulties in the notations , first what does
$G_{\alpha}=K_{\alpha}^c$ , is this the complement of each compact set ? so since compact sets are closed the complement works as an open cover ?

Right.
 
We all know the definition of n-dimensional topological manifold uses open sets and homeomorphisms onto the image as open set in ##\mathbb R^n##. It should be possible to reformulate the definition of n-dimensional topological manifold using closed sets on the manifold's topology and on ##\mathbb R^n## ? I'm positive for this. Perhaps the definition of smooth manifold would be problematic, though.

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 5 ·
Replies
5
Views
6K
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
2K
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
6
Views
2K
  • · Replies 9 ·
Replies
9
Views
5K