MHB Comparing Difference Quotients for Approximating $f'''(x)$

  • Thread starter Thread starter evinda
  • Start date Start date
  • Tags Tags
    Difference
Click For Summary
The discussion focuses on the accuracy of two difference quotients for approximating the third derivative, $f'''(x)$. The first difference quotient has an error bound of $\frac{22}{4} h ||f^{(4)}||_{\infty}$, while the second has a smaller error bound of $\frac{3}{4} h ||f^{(4)}||_{\infty}$. This suggests that the second difference quotient is a more accurate approximation due to its smaller constant. Participants discuss the need for a formal justification of this conclusion, with suggestions to express the error terms in a sharper form. Overall, the conversation emphasizes the importance of error analysis in determining the accuracy of numerical approximations.
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Wave)

I have to show that the following difference quotients are approximations of $f'''(x)$.

$$\frac{f(x+3h)-3f(x+2h)+3f(x+h)-f(x)}{h^3} \\ \frac{f(x+2h)-2f(x+h)+2f(x-h)-f(x-2h)}{2h^3}$$

Which approximation is more accurate? Justify your answer.I found the Taylor expansion of $f(x+3h) , f(x+2h), f(x+h)$ and found that

$$\left| \frac{f(x+3h)-3f(x+2h)+3f(x+h)-f(x)}{h^3}-f'''(x) \right| \leq \frac{22}{4} h ||f^{(4)}||_{\infty}$$

Have we shown now that $\frac{f(x+3h)-3f(x+2h)+3f(x+h)-f(x)}{h^3}$ is an approximation of $f'''(x)$?
Or do we have to show that the above tends to $0$ ?

Similarly, I found that

$$\left| \frac{f(x+2h)-2f(x+h)+2f(x-h)-f(x-2h)}{2h^3}-f'''(x) \right| \leq \frac{3}{4} h ||f^{(4)}||_{\infty}$$

The second difference quotient is a better approximation because of the smaller constant, right ?

But how could we justify it formally? (Thinking)
 
Mathematics news on Phys.org
evinda said:
The second difference quotient is a better approximation because of the smaller constant, right ?

But how could we justify it formally? (Thinking)

Hey evinda! (Smile)

I think that what you have is already sufficiently formal.

The only thing I can think of to improve it, is to set the expressions equal to $\frac{22}{4} h f^{(4)}(x+\theta h)$ respectively $\frac{3}{4} h f^{(4)}(x+\xi h)$, where $0\le\theta\le 1$ and $0\le\xi\le 1$.
I'd consider that sharper than giving an upper bound. (Thinking)
 
I like Serena said:
Hey evinda! (Smile)

I think that what you have is already sufficiently formal.

The only thing I can think of to improve it, is to set the expressions equal to $\frac{22}{4} h f^{(4)}(x+\theta h)$ respectively $\frac{3}{4} h f^{(4)}(x+\xi h)$, where $0\le\theta\le 1$ and $0\le\xi\le 1$.
I'd consider that sharper than giving an upper bound. (Thinking)

Nice... Thanks a lot! (Smile)
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
5
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K