Comparing Difference Quotients for Approximating $f'''(x)$

  • Context: MHB 
  • Thread starter Thread starter evinda
  • Start date Start date
  • Tags Tags
    Difference
Click For Summary
SUMMARY

The discussion focuses on comparing two difference quotients for approximating the third derivative, \( f'''(x) \). The first quotient, \( \frac{f(x+3h)-3f(x+2h)+3f(x+h)-f(x)}{h^3} \), has an error bound of \( \left| \frac{f(x+3h)-3f(x+2h)+3f(x+h)-f(x)}{h^3}-f'''(x) \right| \leq \frac{22}{4} h ||f^{(4)}||_{\infty} \). The second quotient, \( \frac{f(x+2h)-2f(x+h)+2f(x-h)-f(x-2h)}{2h^3} \), has a tighter error bound of \( \left| \frac{f(x+2h)-2f(x+h)+2f(x-h)-f(x-2h)}{2h^3}-f'''(x) \right| \leq \frac{3}{4} h ||f^{(4)}||_{\infty} \). Thus, the second difference quotient is determined to be a more accurate approximation due to its smaller constant in the error term.

PREREQUISITES
  • Understanding of Taylor series expansions
  • Knowledge of difference quotients in numerical analysis
  • Familiarity with error analysis in approximations
  • Concept of higher-order derivatives, specifically \( f^{(4)}(x) \)
NEXT STEPS
  • Study Taylor series and their applications in numerical methods
  • Explore error bounds in numerical differentiation techniques
  • Learn about higher-order difference quotients for better approximations
  • Investigate the implications of \( f^{(4)}(x) \) in approximation accuracy
USEFUL FOR

Mathematicians, numerical analysts, and students studying calculus or numerical methods who seek to understand the accuracy of derivative approximations.

evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Wave)

I have to show that the following difference quotients are approximations of $f'''(x)$.

$$\frac{f(x+3h)-3f(x+2h)+3f(x+h)-f(x)}{h^3} \\ \frac{f(x+2h)-2f(x+h)+2f(x-h)-f(x-2h)}{2h^3}$$

Which approximation is more accurate? Justify your answer.I found the Taylor expansion of $f(x+3h) , f(x+2h), f(x+h)$ and found that

$$\left| \frac{f(x+3h)-3f(x+2h)+3f(x+h)-f(x)}{h^3}-f'''(x) \right| \leq \frac{22}{4} h ||f^{(4)}||_{\infty}$$

Have we shown now that $\frac{f(x+3h)-3f(x+2h)+3f(x+h)-f(x)}{h^3}$ is an approximation of $f'''(x)$?
Or do we have to show that the above tends to $0$ ?

Similarly, I found that

$$\left| \frac{f(x+2h)-2f(x+h)+2f(x-h)-f(x-2h)}{2h^3}-f'''(x) \right| \leq \frac{3}{4} h ||f^{(4)}||_{\infty}$$

The second difference quotient is a better approximation because of the smaller constant, right ?

But how could we justify it formally? (Thinking)
 
Physics news on Phys.org
evinda said:
The second difference quotient is a better approximation because of the smaller constant, right ?

But how could we justify it formally? (Thinking)

Hey evinda! (Smile)

I think that what you have is already sufficiently formal.

The only thing I can think of to improve it, is to set the expressions equal to $\frac{22}{4} h f^{(4)}(x+\theta h)$ respectively $\frac{3}{4} h f^{(4)}(x+\xi h)$, where $0\le\theta\le 1$ and $0\le\xi\le 1$.
I'd consider that sharper than giving an upper bound. (Thinking)
 
I like Serena said:
Hey evinda! (Smile)

I think that what you have is already sufficiently formal.

The only thing I can think of to improve it, is to set the expressions equal to $\frac{22}{4} h f^{(4)}(x+\theta h)$ respectively $\frac{3}{4} h f^{(4)}(x+\xi h)$, where $0\le\theta\le 1$ and $0\le\xi\le 1$.
I'd consider that sharper than giving an upper bound. (Thinking)

Nice... Thanks a lot! (Smile)
 

Similar threads

  • · Replies 18 ·
Replies
18
Views
2K
  • · Replies 22 ·
Replies
22
Views
4K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 20 ·
Replies
20
Views
4K
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K