MHB Comparing Difference Quotients for Approximating $f'''(x)$

  • Thread starter Thread starter evinda
  • Start date Start date
  • Tags Tags
    Difference
AI Thread Summary
The discussion focuses on the accuracy of two difference quotients for approximating the third derivative, $f'''(x)$. The first difference quotient has an error bound of $\frac{22}{4} h ||f^{(4)}||_{\infty}$, while the second has a smaller error bound of $\frac{3}{4} h ||f^{(4)}||_{\infty}$. This suggests that the second difference quotient is a more accurate approximation due to its smaller constant. Participants discuss the need for a formal justification of this conclusion, with suggestions to express the error terms in a sharper form. Overall, the conversation emphasizes the importance of error analysis in determining the accuracy of numerical approximations.
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Wave)

I have to show that the following difference quotients are approximations of $f'''(x)$.

$$\frac{f(x+3h)-3f(x+2h)+3f(x+h)-f(x)}{h^3} \\ \frac{f(x+2h)-2f(x+h)+2f(x-h)-f(x-2h)}{2h^3}$$

Which approximation is more accurate? Justify your answer.I found the Taylor expansion of $f(x+3h) , f(x+2h), f(x+h)$ and found that

$$\left| \frac{f(x+3h)-3f(x+2h)+3f(x+h)-f(x)}{h^3}-f'''(x) \right| \leq \frac{22}{4} h ||f^{(4)}||_{\infty}$$

Have we shown now that $\frac{f(x+3h)-3f(x+2h)+3f(x+h)-f(x)}{h^3}$ is an approximation of $f'''(x)$?
Or do we have to show that the above tends to $0$ ?

Similarly, I found that

$$\left| \frac{f(x+2h)-2f(x+h)+2f(x-h)-f(x-2h)}{2h^3}-f'''(x) \right| \leq \frac{3}{4} h ||f^{(4)}||_{\infty}$$

The second difference quotient is a better approximation because of the smaller constant, right ?

But how could we justify it formally? (Thinking)
 
Mathematics news on Phys.org
evinda said:
The second difference quotient is a better approximation because of the smaller constant, right ?

But how could we justify it formally? (Thinking)

Hey evinda! (Smile)

I think that what you have is already sufficiently formal.

The only thing I can think of to improve it, is to set the expressions equal to $\frac{22}{4} h f^{(4)}(x+\theta h)$ respectively $\frac{3}{4} h f^{(4)}(x+\xi h)$, where $0\le\theta\le 1$ and $0\le\xi\le 1$.
I'd consider that sharper than giving an upper bound. (Thinking)
 
I like Serena said:
Hey evinda! (Smile)

I think that what you have is already sufficiently formal.

The only thing I can think of to improve it, is to set the expressions equal to $\frac{22}{4} h f^{(4)}(x+\theta h)$ respectively $\frac{3}{4} h f^{(4)}(x+\xi h)$, where $0\le\theta\le 1$ and $0\le\xi\le 1$.
I'd consider that sharper than giving an upper bound. (Thinking)

Nice... Thanks a lot! (Smile)
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top