Comparing Square Root Differences: $\sqrt{7}-\sqrt{6}$ vs. $\sqrt{6}-\sqrt{5}$

  • Thread starter Thread starter Jameson
  • Start date Start date
Click For Summary
The discussion centers on comparing the values of $\sqrt{7}-\sqrt{6}$ and $\sqrt{6}-\sqrt{5}$ without using a calculator. Participants analyze the differences by squaring both expressions to simplify the comparison. It is determined that $\sqrt{7}-\sqrt{6}$ is larger than $\sqrt{6}-\sqrt{5}$. The correct reasoning involves understanding the behavior of square roots and their differences. Ultimately, the conclusion is that $\sqrt{7}-\sqrt{6}$ exceeds $\sqrt{6}-\sqrt{5}$.
Jameson
Insights Author
Gold Member
MHB
Messages
4,533
Reaction score
13
Which is larger? $\sqrt{7}-\sqrt{6}$ or $\sqrt{6}-\sqrt{5}$? Answer without using a calculator.
--------------------
 
Physics news on Phys.org
Congratulation to the following members for their correct solutions:

1) MarkFL
2) anemone
3) Pranav
4) eddybob123
5) kaliprasad

Solution (from eddybob123):
$$ 5041 > 5040$$
$$\Rightarrow 71>2\sqrt{1260}$$
$$\Rightarrow 1< 72-2\sqrt{1260}$$
$$\Rightarrow 1^2< (\sqrt{42}-\sqrt{30})^2$$
$$\Rightarrow 1< \sqrt{42}-\sqrt{30}$$
$$\Rightarrow 2<2(\sqrt{42}-\sqrt{30})$$
$$\Rightarrow 7-2\sqrt{42}+6<6-2\sqrt{30}+5$$
$$\Rightarrow (\sqrt{7}-\sqrt{6})^2<(\sqrt{6}-\sqrt{5})^2$$
$$\Rightarrow \sqrt{7}-\sqrt{6}<\sqrt{6}-\sqrt{5}$$
 

Similar threads

Replies
1
Views
1K
  • · Replies 17 ·
Replies
17
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
3
Views
1K
Replies
8
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K