- #1
kwal0203
- 69
- 0
Homework Statement
Use a comparison test to determine whether this series converges:
[tex] \sum_{x=1}^{\infty }\sin ^2(\frac{1}{x}) [/tex]
Homework Equations
The Attempt at a Solution
At small values of x:
[tex] \sin x\approx x [/tex]
[tex] a_{x}=\sin \frac{1}{x} [/tex]
[tex] b_{x}=\frac{1}{x} [/tex]
[tex] \lim \frac{a_{x}}{b_{x}}=\frac{\sin \frac{1}{x}}{\frac{1}{x}}=1 [/tex]
Since 1/x diverges so does sin(1/x).
Can I use this same method to solve the question above? ( i.e. sin^2(1/x) )