MHB Complete Sets of Real Numbers: Find All

Click For Summary
A set A of real numbers is defined as complete if for all a, b in A, the conditions a + b in A and ab in A hold. The discussion establishes that since A is nonempty, it must contain 0, leading to the conclusion that all negative numbers are included in A. Furthermore, it is shown that all positive numbers can also be derived from elements in A, ultimately leading to the conclusion that A must equal the entire set of real numbers, R. This problem originates from the 2016 Russian mathematical olympiad for junior high school students. The final result confirms that the only complete set of real numbers is A = R.
Evgeny.Makarov
Gold Member
MHB
Messages
2,434
Reaction score
4
Call a nonempty (finite or infinite) set $A\subseteq\Bbb R$ complete if for all $a,b\in\Bbb R$ such that $a+b\in A$ it is also the case that $ab\in A$. Find all complete sets.
 
Mathematics news on Phys.org
Evgeny.Makarov said:
Call a nonempty (finite or infinite) set $A\subseteq\Bbb R$ complete if for all $a,b\in\Bbb R$ such that $a+b\in A$ it is also the case that $ab\in A$. Find all complete sets.
[sp]Since $A$ is nonempty it contains some real number $a$. Then $0+a = a\in a$, so the completeness condition implies that $0 = 0a\in A.$

Next, $x + (-x) = 0 \in A$, for every real number $x$. Therefore $-x^2 = x(-x) \in A$. But every negative number is of this form. Therefore $(-\infty,0] \subseteq A.$

Finally, $ \frac12y + \frac12y = y$. So if $y\in A$ then $\frac14y^2 =\bigl(\frac12y\bigr)^2 \in A$. But every positive number is of the form $\frac14y^2$ for some negative number $y$, and therefore belongs to $A$.

Conclusion: $A = \Bbb R.$
[/sp]
 
Correct. This is a problem from the regional round of the 2016 Russian mathematical olympiad for junior high school students.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
3
Views
2K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 13 ·
Replies
13
Views
4K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
11
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K