MHB Completion of the proof of the Cosine Rule

Click For Summary
The discussion centers on the proof of the Cosine Rule, specifically addressing its applicability in obtuse-angled triangles. The initial proof presented relies on constructing a perpendicular segment from a vertex, which is not feasible in obtuse triangles. The challenge is to demonstrate the relationship c² = a² + b² - 2ab cos(C) when angle C is obtuse. The user references trigonometric identities to derive the formula using Pythagoras' Theorem, ultimately confirming the validity of the Cosine Rule for all triangle types. This highlights the importance of considering different triangle configurations in geometric proofs.
Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
Hello my friends,

I posted this picture as a proof of the Cosine Rule in another thread,

cosinerule_zps33b193fb.jpg


however after having a closer look at it, I believe it is incomplete. It works by drawing a segment from one of the vertices so that this segment is perpendicular to one side of the triangle, and then applying Pythagoras' Theorem.

However, if you have an obtuse-angled triangle, it is impossible to draw a segment from one of the acute vertices to make a right-angle triangle. So how is it possible to prove this relationship:

[math]\displaystyle c^2 = a^2 + b^2 - 2\,a\,b\cos{(C)}[/math]

when C is an obtuse angle?
 
Mathematics news on Phys.org
Please refer to the following diagram:

View attachment 867

Note: I have used $$\sin(\pi-\theta)=\sin(\theta)$$ and $$\cos(\pi-\theta)=-\cos(\theta)$$.

By Pythagoras, we now have:

$$(a-b\cos(\theta))^2+(b\sin(\theta))^2=c^2$$

$$c^2=a^2-2ab\cos(\theta)+b^2\cos^2(\theta)+b^2\sin^2(\theta)$$

$$c^2=a^2+b^2-2ab\cos(\theta)$$
 

Attachments

  • proveit.jpg
    proveit.jpg
    5.3 KB · Views: 113
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

Replies
2
Views
2K
Replies
7
Views
3K
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
6K
  • · Replies 17 ·
Replies
17
Views
11K
  • · Replies 1 ·
Replies
1
Views
2K