MHB [Complex Analysis] Singularity in product of analytic functions

ludwig1
Messages
1
Reaction score
0
Suppose f,g:ℂ→ℂ are analytic with singularities at z=0. I was wondering whether f(z)^2 or f(z)g(z) will have a singularity at z=0? For each, can you give me a proof or a counterexample?
 
Physics news on Phys.org
ludwig said:
Suppose f,g:ℂ→ℂ are analytic with singularities at z=0. I was wondering whether f(z)^2 or f(z)g(z) will have a singularity at z=0? For each, can you give me a proof or a counterexample?
I think the most staightforward (but perhaps not the most handy?) approach would be to just consider Laurent series for $f$ and $g$ on the same annulus centered at the origin. What do you know about the coefficients in the product of two such series?

Assuming that "singularity" means either "pole" or "essential singularity", you could start by considering the case that $f$ and $g$ have poles of (finite) orders $n$ and $m$ in $\mathbb{N}$, respectively. Next, you could look at the case that one or both of $f$ and $g$ have essential singularities (i.e. infinitely many non-zero terms occur in the principal parts of their Laurent series).
 
We all know the definition of n-dimensional topological manifold uses open sets and homeomorphisms onto the image as open set in ##\mathbb R^n##. It should be possible to reformulate the definition of n-dimensional topological manifold using closed sets on the manifold's topology and on ##\mathbb R^n## ? I'm positive for this. Perhaps the definition of smooth manifold would be problematic, though.

Similar threads

Replies
7
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
7
Views
4K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K