MHB Complex function that satisfies Cauchy Riemann equations

beetlez
Messages
2
Reaction score
0
Hi,
I am currently teaching myself complex analysis (using Stein and Shakarchi) and wondered if someone can guide me with this:

Find all the complex numbers z∈ C such that f(z)=z cos (z ̅).

[z ̅ is z-bar, the complex conjugate).

Thanks!
 
Physics news on Phys.org
Hi beetlez,

Just to be clear, are you looking to find all complex numbers $z$ at which $f$ holomorphic?
 
Euge said:
Hi beetlez,

Just to be clear, are you looking to find all complex numbers $z$ at which $f$ holomorphic?

Hi, no actually just assuming that the function is differentiable, I just wanted help to derive the partial differential equations (du/dx, du/dy, dv/dx and dv/dy).
 
I posted this question on math-stackexchange but apparently I asked something stupid and I was downvoted. I still don't have an answer to my question so I hope someone in here can help me or at least explain me why I am asking something stupid. I started studying Complex Analysis and came upon the following theorem which is a direct consequence of the Cauchy-Goursat theorem: Let ##f:D\to\mathbb{C}## be an anlytic function over a simply connected region ##D##. If ##a## and ##z## are part of...
Back
Top