Complex integral oriented counterclockwise

Click For Summary
SUMMARY

The integral of the function $\frac{e^z}{z}$ around the unit circle $\gamma$, oriented counterclockwise, is evaluated using the Cauchy Integral Formula, yielding a result of $2\pi i$. The parametrization of the unit circle is given by $\gamma(t) = e^{it}$ for $0 \leq t \leq 2\pi$, with the derivative $\gamma'(t) = ie^{it}$. The discussion also confirms that integrals of $\frac{\cos(z)}{z}$ and $\frac{\cos(z^2)}{z}$ also equal $2\pi i$, while $\frac{\sin(z)}{z}$ evaluates to 0. The key to these evaluations lies in the Laurent series expansion around the singularity at zero.

PREREQUISITES
  • Understanding of complex analysis, particularly contour integration.
  • Familiarity with the Cauchy Integral Formula.
  • Knowledge of Laurent series expansions.
  • Basic proficiency in evaluating integrals involving complex functions.
NEXT STEPS
  • Study the Cauchy Integral Theorem and its applications in complex analysis.
  • Learn about Laurent series and their role in evaluating integrals around singularities.
  • Explore examples of contour integrals involving exponential functions.
  • Investigate the implications of residue theory in complex integration.
USEFUL FOR

Students and professionals in mathematics, particularly those focusing on complex analysis, as well as anyone interested in advanced integral calculus techniques.

Dustinsfl
Messages
2,217
Reaction score
5
$\gamma$ is the unit circle oriented counterclockwise.

$\displaystyle\int_{\gamma}\dfrac{e^z}{z}dz$

$\gamma(t) = e^{it}$ for $0\leq t\leq 2\pi$

$\gamma'(t) = ie^{it}$

Using $\int_{\gamma} f(\gamma(t))\gamma'(t)dt$, I obtain

$\displaystyle i\int_0^{2\pi}e^{e^{it}}dt$

Not quite sure how to integrate this one.
 
Physics news on Phys.org
Better use the Cauchy Integral Formula, then $\displaystyle\int_{\gamma}\dfrac{e^z}{z}dz=2\pi i e^0=2\pi i$
 
Fernando Revilla said:
Better use the Cauchy Integral Formula, then $\displaystyle\int_{\gamma}\dfrac{e^z}{z}dz=2\pi i e^0=2\pi i$

Evaluating $\frac{\cos(z)}{z}$ and $\frac{\cos(z^2)}{z}$ will be $2\pi i$ as well and then $\frac{\sin(z)}{z}$ is 0, correct?
 
dwsmith said:
Evaluating $\frac{\cos(z)}{z}$ and $\frac{\cos(z^2)}{z}$ will be $2\pi i$ as well and then $\frac{\sin(z)}{z}$ is 0, correct?

Yes, that''s correct.

In you expand each function in a Laurent series about zero (since that's where a singularity exists for each function), the only term that will contribute anything is the $ \displaystyle \frac{1}{z}$ term. Specifically it will contribute $2 \pi i$ times its coefficient.

$\displaystyle \frac{\cos \ z}{z} = \frac{1}{z} \left( 1 - \frac{z^{2}}{2!} + \frac{z^{4}}{4!} + \ldots \right) = {\bf \frac{1}{z}} - \frac{z}{2!} + \frac{z^{3}}{4!} + \ldots $

$ \displaystyle \frac{\cos \ z^{2}}{z} = \frac{1}{z} \left( 1 - \frac{z^{4}}{2!} + \frac{z^{8}}{4!} + \ldots \right) = {\bf \frac{1}{z}} - \frac{z^{3}}{2!} + \frac{z^{7}}{4!} + \ldots$

$\displaystyle \frac{\sin z}{z} = \frac{1}{z} \left( z - \frac{z^{3}}{3!} + \frac{z^{5}}{5!} + \ldots \right) = 1 - \frac{z^{2}}{3!} + \frac{z^{4}}{5!} + \ldots $
 
Last edited:
dwsmith said:
$\gamma$ is the unit circle oriented counterclockwise.

$\displaystyle\int_{\gamma}\dfrac{e^z}{z}dz$

$\gamma(t) = e^{it}$ for $0\leq t\leq 2\pi$

$\gamma'(t) = ie^{it}$

Using $\int_{\gamma} f(\gamma(t))\gamma'(t)dt$, I obtain

$\displaystyle i\int_0^{2\pi}e^{e^{it}}dt$

Not quite sure how to integrate this one.

How can this be integrate without using the Cauchy Integral Formula?

$\displaystyle\int_0^{2\pi}\left(\frac{1}{z}+1+ \frac{z}{2!} +\frac{z^2}{3!}+\cdots\right)dz$

Now, what should be done?

Never mind I found a Theorem to use in my book that applies to the expansion.
 
Last edited:
dwsmith said:
How can this be integrate without using the Cauchy Integral Formula?

$\displaystyle\int_0^{2\pi}\left(\frac{1}{z}+1+ \frac{z}{2!} +\frac{z^2}{3!}+\cdots\right)dz$

Now, what should be done?

Never mind I found a Theorem to use in my book that applies to the expansion.
$\displaystyle \int_{\gamma} \frac{e^z}{z}dz = \int_{\gamma}\left(\frac{1}{z}+1+ \frac{z}{2!} +\frac{z^2}{3!}+\cdots\right)dz$

$ \displaystyle = \int_{0}^{2 \pi} \left( e^{-it} + 1 + \frac{e^{it}}{2!} + \frac{e^{2it}}{3!} + \ldots \right) \ i e^{it} \ dt$

$ \displaystyle = i \int_{0}^{2 \pi} \left(1 + e^{it} + \frac{e^{2it}}{2!} + \frac{e^{3it}}{3!} \ldots \right) = i \int_{0}^{2 \pi} \left(1 + \cos(t) + i \sin(t) + \frac{\cos (2t)}{2!} + i\frac{\sin (2t)}{2!} + \ldots \right) $

$ \displaystyle = i \left( 2 \pi + 0 + 0 + 0 + 0 + \ldots \right)= 2 \pi i$
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 29 ·
Replies
29
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 11 ·
Replies
11
Views
5K
  • · Replies 7 ·
Replies
7
Views
3K