MHB Complex integral oriented counterclockwise

Click For Summary
The integral of the function \( \frac{e^z}{z} \) over the unit circle oriented counterclockwise is evaluated using the Cauchy Integral Formula, yielding a result of \( 2\pi i \). The discussion highlights that when expanding functions like \( \frac{\cos(z)}{z} \) and \( \frac{\sin(z)}{z} \) in Laurent series, only the \( \frac{1}{z} \) term contributes to the integral, confirming that their integrals also yield \( 2\pi i \) or 0, respectively. Participants explore alternative methods to evaluate the integral without directly applying the Cauchy Integral Formula. Ultimately, the integral is confirmed through series expansion and integration techniques, reinforcing the result of \( 2\pi i \). The conversation emphasizes the importance of understanding singularities and series expansions in complex analysis.
Dustinsfl
Messages
2,217
Reaction score
5
$\gamma$ is the unit circle oriented counterclockwise.

$\displaystyle\int_{\gamma}\dfrac{e^z}{z}dz$

$\gamma(t) = e^{it}$ for $0\leq t\leq 2\pi$

$\gamma'(t) = ie^{it}$

Using $\int_{\gamma} f(\gamma(t))\gamma'(t)dt$, I obtain

$\displaystyle i\int_0^{2\pi}e^{e^{it}}dt$

Not quite sure how to integrate this one.
 
Physics news on Phys.org
Better use the Cauchy Integral Formula, then $\displaystyle\int_{\gamma}\dfrac{e^z}{z}dz=2\pi i e^0=2\pi i$
 
Fernando Revilla said:
Better use the Cauchy Integral Formula, then $\displaystyle\int_{\gamma}\dfrac{e^z}{z}dz=2\pi i e^0=2\pi i$

Evaluating $\frac{\cos(z)}{z}$ and $\frac{\cos(z^2)}{z}$ will be $2\pi i$ as well and then $\frac{\sin(z)}{z}$ is 0, correct?
 
dwsmith said:
Evaluating $\frac{\cos(z)}{z}$ and $\frac{\cos(z^2)}{z}$ will be $2\pi i$ as well and then $\frac{\sin(z)}{z}$ is 0, correct?

Yes, that''s correct.

In you expand each function in a Laurent series about zero (since that's where a singularity exists for each function), the only term that will contribute anything is the $ \displaystyle \frac{1}{z}$ term. Specifically it will contribute $2 \pi i$ times its coefficient.

$\displaystyle \frac{\cos \ z}{z} = \frac{1}{z} \left( 1 - \frac{z^{2}}{2!} + \frac{z^{4}}{4!} + \ldots \right) = {\bf \frac{1}{z}} - \frac{z}{2!} + \frac{z^{3}}{4!} + \ldots $

$ \displaystyle \frac{\cos \ z^{2}}{z} = \frac{1}{z} \left( 1 - \frac{z^{4}}{2!} + \frac{z^{8}}{4!} + \ldots \right) = {\bf \frac{1}{z}} - \frac{z^{3}}{2!} + \frac{z^{7}}{4!} + \ldots$

$\displaystyle \frac{\sin z}{z} = \frac{1}{z} \left( z - \frac{z^{3}}{3!} + \frac{z^{5}}{5!} + \ldots \right) = 1 - \frac{z^{2}}{3!} + \frac{z^{4}}{5!} + \ldots $
 
Last edited:
dwsmith said:
$\gamma$ is the unit circle oriented counterclockwise.

$\displaystyle\int_{\gamma}\dfrac{e^z}{z}dz$

$\gamma(t) = e^{it}$ for $0\leq t\leq 2\pi$

$\gamma'(t) = ie^{it}$

Using $\int_{\gamma} f(\gamma(t))\gamma'(t)dt$, I obtain

$\displaystyle i\int_0^{2\pi}e^{e^{it}}dt$

Not quite sure how to integrate this one.

How can this be integrate without using the Cauchy Integral Formula?

$\displaystyle\int_0^{2\pi}\left(\frac{1}{z}+1+ \frac{z}{2!} +\frac{z^2}{3!}+\cdots\right)dz$

Now, what should be done?

Never mind I found a Theorem to use in my book that applies to the expansion.
 
Last edited:
dwsmith said:
How can this be integrate without using the Cauchy Integral Formula?

$\displaystyle\int_0^{2\pi}\left(\frac{1}{z}+1+ \frac{z}{2!} +\frac{z^2}{3!}+\cdots\right)dz$

Now, what should be done?

Never mind I found a Theorem to use in my book that applies to the expansion.
$\displaystyle \int_{\gamma} \frac{e^z}{z}dz = \int_{\gamma}\left(\frac{1}{z}+1+ \frac{z}{2!} +\frac{z^2}{3!}+\cdots\right)dz$

$ \displaystyle = \int_{0}^{2 \pi} \left( e^{-it} + 1 + \frac{e^{it}}{2!} + \frac{e^{2it}}{3!} + \ldots \right) \ i e^{it} \ dt$

$ \displaystyle = i \int_{0}^{2 \pi} \left(1 + e^{it} + \frac{e^{2it}}{2!} + \frac{e^{3it}}{3!} \ldots \right) = i \int_{0}^{2 \pi} \left(1 + \cos(t) + i \sin(t) + \frac{\cos (2t)}{2!} + i\frac{\sin (2t)}{2!} + \ldots \right) $

$ \displaystyle = i \left( 2 \pi + 0 + 0 + 0 + 0 + \ldots \right)= 2 \pi i$
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
922
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 29 ·
Replies
29
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 11 ·
Replies
11
Views
5K
  • · Replies 7 ·
Replies
7
Views
3K