filiphenrique
- 4
- 0
Hey!
How do I integrate ∫tln√(t+1) and ∫4te^(2-0,3t)?
Thanks in advance.
How do I integrate ∫tln√(t+1) and ∫4te^(2-0,3t)?
Thanks in advance.
\begin{Bmatrix}u &=& \tfrac{1}{2}\ln(t+1) && dv &=& t\,dt \\ du &=& \tfrac{dt}{2(t+1)} && v &=& \tfrac{1}{2}t^2\end{Bmatrix}I \;=\;\int t \ln\sqrt{t+1}\,dt
DreamWeaver said:For the second integral, I'm not entirely sure what you mean. Is it
$$4\, \int e^{2-0.3 t} \, dt = ?$$
If so, then it might be worth separating the exponential term into two parts; one that contains the variable "t", and must - therefore - be kept inside the integral sign, while the other is a constant $$(e^{x+y}=e^xe^y)$$:
$$\int e^{2-0.3 t}\, dt = e^2\, \int e^{-0.3 t}\, dt$$