Complex Number Equation: Why Does a+bi=1 Not Give the Final Answer?

Click For Summary
SUMMARY

The discussion focuses on solving the polynomial equations z^3 - 1 = 0 and 3z^4 + i = 1 - 2i in the form a + bi. The solutions for z^3 - 1 = 0 yield three distinct roots: z = 1, z = -1/2 + (√3/2)i, and z = -1/2 - (√3/2)i. It is clarified that while a + bi = 1 is a valid representation, the complete solution requires all roots in the a + bi format. The importance of understanding both the modulus and argument of complex numbers is emphasized for comprehensive problem-solving.

PREREQUISITES
  • Understanding of complex numbers and their representations (a + bi and polar form).
  • Knowledge of polynomial equations and their roots.
  • Familiarity with modulus and argument of complex numbers.
  • Ability to manipulate exponential forms of complex numbers.
NEXT STEPS
  • Study the polar form of complex numbers and its applications.
  • Learn how to derive roots of higher-order polynomial equations in complex analysis.
  • Explore the properties of complex multiplication and its effects on modulus and argument.
  • Investigate the use of De Moivre's Theorem in solving complex equations.
USEFUL FOR

Mathematicians, engineering students, and anyone involved in complex analysis or polynomial equations will benefit from this discussion.

Raerin
Messages
46
Reaction score
0
Solve the following equations in the form a +bi.
a) z^3-1=0
b) 3z^4+i=1-2i

Apparently, the solution for a) is this:
z^3=1
z=1
z=a+bi=1
sqrt(a^2+b^2)=1

I don't understand why a+bi=1 is not the final answer. Why do you have to make it into a modulus?
 
Physics news on Phys.org
Raerin said:
Solve the following equations in the form a +bi.
a) z^3-1=0
b) 3z^4+i=1-2i

Apparently, the solution for a) is this:
z^3=1
z=1
z=a+bi=1
sqrt(a^2+b^2)=1

I don't understand why a+bi=1 is not the final answer. Why do you have to make it into a modulus?

To solve a polynomial equation in complex numbers, there are always as many roots as the order of the polynomial. I'd advise simplifying as much as possible (e.g. up to z^3 = something), writing the RHS in a general exponential form, and going from there...
 
Raerin said:
Solve the following equations in the form a +bi.
a) z^3-1=0
b) 3z^4+i=1-2i

Apparently, the solution for a) is this:
z^3=1
z=1
z=a+bi=1
sqrt(a^2+b^2)=1

I don't understand why a+bi=1 is not the final answer. Why do you have to make it into a modulus?

There are 3 solutions for a).

Every complex number can be written as the combination of the modulus and the angle (aka its "argument").
If we multiply 2 complex numbers, the result has a modulus that is the product of the 2 moduli, and it has an angle that is the sum of the 2 angles.

Suppose the modulus of $z$ is $r$, and the angle of $z$ is $\phi$.
Then the modulus of $z^3$ is $r^3$, and its angle is $3\phi$.

To solve $z^3=1$, we need that $r^3 = 1$ and that $3\phi = 2n\pi$ (where $n$ is a whole number).
It follows that the modulus $r$ must be $1$.
And that the angle $\phi = 0,\ 2\pi/3,\ 4\pi/3$.

In other words, the solutions are:
\begin{aligned}
z&=1 \\
z&=-\frac 1 2 + \frac 1 2 \sqrt 3 i \\
z&=-\frac 1 2 - \frac 1 2 \sqrt 3 i
\end{aligned}
 
I like Serena said:
There are 3 solutions for a).

Every complex number can be written as the combination of the modulus and the angle (aka its "argument").
If we multiply 2 complex numbers, the result has a modulus that is the product of the 2 moduli, and it has an angle that is the sum of the 2 angles.

Suppose the modulus of $z$ is $r$, and the angle of $z$ is $\phi$.
Then the modulus of $z^3$ is $r^3$, and its angle is $3\phi$.

To solve $z^3=1$, we need that $r^3 = 1$ and that $3\phi = 2n\pi$ (where $n$ is a whole number).
It follows that the modulus $r$ must be $1$.
And that the angle $\phi = 0,\ 2\pi/3,\ 4\pi/3$.

In other words, the solutions are:
\begin{aligned}
z&=1 \\
z&=-\frac 1 2 + \frac 1 2 \sqrt 3 i \\
z&=-\frac 1 2 - \frac 1 2 \sqrt 3 i
\end{aligned}

So how am I supposed to write that in a+bi form?
 
Raerin said:
So how am I supposed to write that in a+bi form?

The first solution has $a=1,\ b=0$.
The second solution has $a=-\frac 1 2,\ b=\frac 1 2 \sqrt 3$.

In other words, the solutions I gave are in $a+bi$ form.
 
I like Serena said:
The first solution has $a=1,\ b=0$.
The second solution has $a=-\frac 1 2,\ b=\frac 1 2 \sqrt 3$.

In other words, the solutions I gave are in $a+bi$ form.
Oh, I see, I was under the impression that I only need one answer in a+bi form.

Thanks!
 
Raerin said:
Oh, I see, I was under the impression that I only need one answer in a+bi form.

Thanks!

Every complex number has 2 representations: the $a+bi$ or cartesian form and the $r^{}e^{i\phi}$ or polar form.
In this case they are asking for the cartesian form.
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
7K
  • · Replies 13 ·
Replies
13
Views
6K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 19 ·
Replies
19
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K