Complex Number Loci: Proof and Circle Variation with z = 1/(3+it)

  • Context: MHB 
  • Thread starter Thread starter righteous818
  • Start date Start date
  • Tags Tags
    Complex Complex number
Click For Summary
SUMMARY

The discussion focuses on the complex number locus defined by the equation z = 1/(3+it) and its representation on an Argand diagram. Participants successfully demonstrated that z + z* = 6zz* and explored how varying t results in T lying on a circle. The center of this circle is located at (1/6, 0) with a radius of 1/6, derived from the equation |z - 1/6| = 1/6.

PREREQUISITES
  • Understanding of complex numbers and Argand diagrams
  • Familiarity with complex conjugates and their properties
  • Knowledge of loci in the context of complex analysis
  • Ability to manipulate algebraic expressions involving complex numbers
NEXT STEPS
  • Study the properties of complex conjugates in detail
  • Learn about the geometric interpretation of complex numbers on the Argand plane
  • Explore the concept of loci in complex analysis
  • Investigate the derivation of circle equations from complex number expressions
USEFUL FOR

Students and educators in mathematics, particularly those focusing on complex analysis, geometry, and algebra. This discussion is beneficial for anyone looking to deepen their understanding of complex number loci and their geometric representations.

righteous818
Messages
7
Reaction score
0
Given that z = 1/(3+it), it is denoted by T on a argand diagram
1. show that z + z* = 6zz*
Got this part out but the next part i am totally confused

I did abit of loci but i can't figure out this one

2. Show that if t varies T lies on a circle , and state the coordinates of the centre of the circle.

Please help i am clueless
 
Physics news on Phys.org
righteous818 said:
Given that z = 1/(3+it), it is denoted by T on a argand diagram
1. show that z + z* = 6zz*
Got this part out but the next part i am totally confused

I did abit of loci but i can't figure out this one

2. Show that if t varies T lies on a circle , and state the coordinates of the centre of the circle.

Please help i am clueless

1. $\displaystyle z+ z^{*}= \frac{1}{3+i\ t}+ \frac{1}{3-i\ t}= \frac{6}{9+t^{2}}= z\ z^{*}$
Kind regards

$\chi$ $\sigma$
 
Last edited:
i don't understand part 2 can u explain what u did abit more
 
righteous818 said:
Given that z = 1/(3+it), it is denoted by T on a argand diagram
1. show that z + z* = 6zz*
Got this part out but the next part i am totally confused

I did abit of loci but i can't figure out this one

2. Show that if t varies T lies on a circle , and state the coordinates of the centre of the circle.

Please help i am clueless

Part 2.

\[z=\frac{1}{3+it}=\frac{3-it}{9+t^2}\]

So putting \(z=x+iy\) we have:

\[x=\frac{3}{9+t^2}\]\[y=-\frac{t}{9+t^2}\]

squaring and adding gives:

\[x^2+y^2=\frac{9}{(9+t^2)^2}+\frac{t^2}{(9+t^2)^2}=\frac{1}{9+t^2}=\frac{x}{3}\]

so:

\[\left(x^2-\frac{x}{3}+\frac{1}{6^2}\right)+y^2=\frac{1}{6^2}\]

or:

\[ \left( x-\frac{1}{6} \right)^2+y^2=\frac{1}{6^2}\]

CB
 
chisigma said:
1. $\displaystyle z+ z^{*}= \frac{1}{3+i\ t}+ \frac{1}{3-i\ t}= \frac{6}{9+t^{2}}= {\color{red}6}z\ z^{*}$
Kind regards

$\chi$ $\sigma$

See correction in red.

CB
 
righteous818 said:
Given that z = 1/(3+it), it is denoted by T on a argand diagram
1. show that z + z* = 6zz*
Got this part out but the next part i am totally confused

I did abit of loci but i can't figure out this one

2. Show that if t varies T lies on a circle , and state the coordinates of the centre of the circle.

Please help i am clueless

Part 2, method 2.

Given \(z + z^* = 6zz^*\), and letting \(z=x+iy\) we have: \(2x=6(x^2+y^2)\) ..

CB
 
how and where did you get 1/36
 
righteous818 said:
how and where did you get 1/36

By completing the square:

\[x^2-\frac{x}{3}= \left(x^2-\frac{x}{3}+\frac{1}{6^2}\right)-\frac{1}{6^2}=\left(x-\frac{1}{6}\right)^2-\frac{1}{6^2}\]

And please quote the post that your post is referring to.

CB
 
righteous818 said:
Given that z = 1/(3+it), it is denoted by T on a argand diagram
1. show that z + z* = 6zz*
Got this part out but the next part i am totally confused

I did abit of loci but i can't figure out this one

2. Show that if t varies T lies on a circle , and state the coordinates of the centre of the circle.
For part 2, I would use part 1:

If $z + z^* = 6zz^*$ then $zz^* -\frac16z - \frac16z^* = 0.$ Therefore $\bigl(z-\frac16\bigr)\bigl(z^*-\frac16\bigr) = \frac1{36}.$ Thus $\bigl|z-\frac16\bigr|^2 = \frac1{36}.$ Take the square root to get $\bigl|z-\frac16\bigr| = \frac16$, which is the equation of a circle centred at 1/6 with radius 1/6.
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K