MHB Complex Numbers III: Solving z^5-(z-i)^5=0

AI Thread Summary
The discussion centers on solving the equation z^5 - (z - i)^5 = 0, with a focus on identifying the roots. It is established that the roots of w^5 = 1 are given by w = e^(2πki/5) for k = 0, ±1, ±2, which are the distinct fifth roots of unity. However, confusion arises regarding the number of roots for the quartic equation derived from z^5 - (z - i)^5, which should yield exactly four complex roots rather than five. Participants clarify that the expansion of (z - i)^5 leads to a fourth-degree polynomial, confirming the presence of only four roots. The conversation emphasizes the importance of correctly interpreting the roots and the structure of the polynomial involved.
Punch
Messages
44
Reaction score
0
The first part of the question asked to find the roots of w^5=1 which I have found to be e^{2k\pi)i}

Hence show that the roots of the equation z^5-(z-i)^5=0, z not equal i, are \frac{1}{2}(cot{\frac({k\pi}{5})+i), where k=-2, -1, 0, 1, 2.
 
Mathematics news on Phys.org
Punch said:
The first part of the question asked to find the roots of \(w^5=1\) which I have found to be \( e^{2k\pi\;i}\)

Those are not the 5-th roots of unity, whatever integer values k takes, they are all the same and =1

You find the 5-th roots of unity by putting:

\[w^5=1=e^{2\pi k\;i},\ k=0,\pm 1, ...\]

so:

\[ w=e^{ \frac{2 \pi k \; i}{5} },\ k= 0, \pm 1, ...\]

and any set of 5 consecutive values of k will give the 5 distinct roots of unity, so:\(w=e^{\frac{2\pi k\;i}{5}},\ k=-2,-1, 0,1,2 \)



Hence show that the roots of the equation \( z^5-(z-i)^5=0, z \) not equal \(i\), are \(\frac{1}{2} \left(cot\left(\frac{k\pi}{5}\right)+i\right)\), where \( k=-2, -1, 0, 1, 2.\)

Since either one of the purported roots is infinite oR with a different guess at where the brackets are supposed to be \( z^5-(z-i)^5=0, \) is a quartic and so has exactly 4 complex roots, but you list 5 distinct roots.
 
Last edited:
CaptainBlack said:
Those are not the 5-th roots of unity, whatever integer values k takes, they are all the same and =1

You find the 5-th roots of unity by putting:

\[w^5=1=e^{2\pi k\;i},\ k=0,\pm 1, ...\]

so:

\[ w=e^{ \frac{2 \pi k \; i}{5} },\ k= 0, \pm 1, ...\]

and any set of 5 consecutive values of k will give the 5 distinct roots of unity, so:\(w=e^{\frac{2\pi k\;i}{5}},\ k=-2,-1, 0,1,2 \)


Since either one of the purported roots is infinite oR with a different guess at where the brackets are supposed to be \( z^5-(z-i)^5=0, \) is a quartic and so has exactly 4 complex roots, but you list 5 distinct roots.

I understood your answer to the first quote. However, I didn't understand your answer to the second quote. I have checked the question and indeed, 5 distinct roots are listed.
 
$(z- i)^5= z^5- 5iz^4+ 10i^2z^3- 10i^3z^2+ 5i^4z- i^5= z^5- 5iz^4- 10z^3+ 10iz^2+ 5z- 1$
so that $z^5- (z- i)^5= z^5- (z^5- 5iz^4+ 10i^2z^3- 10i^3z^2+ 5i^4z- i^5= z^5- 5iz^4- 10z^3+ 10iz^2+ 5z- 1)= 5iz^4+ 10z^3- 10iz^20- 5z+ 1= 0$
That's a fourth degree equation and has 4 roots.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top