MHB Complex Numbers - Number of Solutions

Lancelot1
Messages
26
Reaction score
0
Hiya all,

I need your assistance with the following problem:

A) Show that the equation

\[z^{2}+i\bar{z}=(-2)\]

has only two imaginary solutions.

B) If Z1 and Z2 are the solutions, draw a rectangle which has the following vertices:

Z1+3 , Z2+3 , Z1+i , Z2+i

I do not know how to even start. Should I try to write Z as a+bi ? Please help (Doh)
 
Mathematics news on Phys.org
Lancelot said:
A) Show that the equation
\[z^{2}+i\bar{z}=(-2)\]
has only two imaginary solutions.

B) If Z1 and Z2 are the solutions, draw a rectangle which has the following vertices:

Z1+3 , Z2+3 , Z1+i , Z2+i

I do not know how to even start. Should I try to write Z as a+bi ?
Yes, write $z = a+ib$. Then the equation becomes $(a+ib)^2 + i(a-ib) + 2 = 0.$ Now remember that if a complex number is zero then its real and imaginary parts must both be zero. That will give you two equations for the real numbers $a$ and $b$, and you should find that there are just two solutions.

I don't know what to say about part B), because as far as I can see, those four points do not form the vertices of a rectangle. (I think it should be a parallelogram.)
 
Isn't a rectangle a sort of parallelogram ? How did you see it's a parallelogram ?
 
Yes, a rectangle is a type of parallelogram. Because you said it is a rectangle, it is a parallelogram. I'm not sure that calling it a parallelogram helps though!
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top