MHB Complex Numbers - Number of Solutions

AI Thread Summary
The equation z² + i̅z = -2 has only two imaginary solutions, which can be derived by substituting z = a + bi and separating the real and imaginary parts. This leads to a system of equations that confirms the existence of two solutions. Regarding part B, the proposed vertices Z1+3, Z2+3, Z1+i, and Z2+i do not form a rectangle but rather a parallelogram. While both shapes share properties, the distinction is important for accurate geometric representation. Understanding these concepts is crucial for solving complex number problems effectively.
Lancelot1
Messages
26
Reaction score
0
Hiya all,

I need your assistance with the following problem:

A) Show that the equation

\[z^{2}+i\bar{z}=(-2)\]

has only two imaginary solutions.

B) If Z1 and Z2 are the solutions, draw a rectangle which has the following vertices:

Z1+3 , Z2+3 , Z1+i , Z2+i

I do not know how to even start. Should I try to write Z as a+bi ? Please help (Doh)
 
Mathematics news on Phys.org
Lancelot said:
A) Show that the equation
\[z^{2}+i\bar{z}=(-2)\]
has only two imaginary solutions.

B) If Z1 and Z2 are the solutions, draw a rectangle which has the following vertices:

Z1+3 , Z2+3 , Z1+i , Z2+i

I do not know how to even start. Should I try to write Z as a+bi ?
Yes, write $z = a+ib$. Then the equation becomes $(a+ib)^2 + i(a-ib) + 2 = 0.$ Now remember that if a complex number is zero then its real and imaginary parts must both be zero. That will give you two equations for the real numbers $a$ and $b$, and you should find that there are just two solutions.

I don't know what to say about part B), because as far as I can see, those four points do not form the vertices of a rectangle. (I think it should be a parallelogram.)
 
Isn't a rectangle a sort of parallelogram ? How did you see it's a parallelogram ?
 
Yes, a rectangle is a type of parallelogram. Because you said it is a rectangle, it is a parallelogram. I'm not sure that calling it a parallelogram helps though!
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top