MaxManus
- 268
- 1
Homework Statement
z is a complex number different from 1 and n >= 1 is an integer
1 + z + z^2+ ... + z^n = \frac{z^{n+1} - 1}{z-1}
show that:
\sin(\theta) + \sin(2 \theta)+ ... \sin(n \theta) = \frac{ \sin(n \theta/2) \sin((n+1) \theta / 2)}{\sin(\theta / 2)}
The Attempt at a Solution
First I I am both sides and De Moivres formula
Im( 1 + z + z^2+ ... + z^n) = r \sin( \theta) + r^2 \sin(2 \theta) + ... r^n \sin(n \theta)
Im( \frac{z^{n+1} - 1}{z-1} ) = \frac{r^n \sin((n+1) \theta)}{\sin(\theta)}
Homework Statement
Can anyone give me a hint from here or tell me if I am on the wrong track