MHB Complex Variables - Solution of a System

Click For Summary
The discussion focuses on demonstrating that solutions to the system $$\dot{x}=Ax+b$$ remain bounded as time approaches infinity, given that the polynomial associated with the system has all its zeros in the closed left half-plane. The specific case examined involves the matrix $$A = \begin{bmatrix} 0 & w \\ -w & 0 \end{bmatrix}$$, leading to eigenvalues on the imaginary axis. The solution approach involves diagonalizing the matrix A and expressing the solution in terms of the eigenvalues and eigenvectors. It is concluded that while the solutions will not necessarily approach zero, they will remain bounded due to the nature of the eigenvalues.
joypav
Messages
149
Reaction score
0
Suppose the polynomial p has all its zeros in the closed half-plane $Re w\le0$, and any zeros that lie on the imaginary axis are of order one.
$$p(z)=det(zI-A),$$
where I is the n x n identity matrix.

Show that any solution of the system

$$\dot{x}=Ax+b$$

remains bounded as $t\to{\infty}$.

Work out in detail the solution of the system with
$$
\begin{bmatrix}
0 & w \\
-w & 0 \\
\end{bmatrix}, w>0
$$
to verify what happens in one special case.

So we have...
$$p(z)=det(zI-A)$$
$$p(z)=det( \begin{bmatrix}
z & 0 \\
0 & z \\
\end{bmatrix}-
\begin{bmatrix}
0 & w \\
-w & 0 \\
\end{bmatrix})=
det(\begin{bmatrix}
z & -w \\
w & z \\
\end{bmatrix})=z^2+w^2=(z+wi)(z-wi)
$$
Both zeros are on the imaginary axis and are both of order one.
Now I am supposed to find the solution of the system?

Do we use that the solution of the system is of the form
$$x_l(t)=\sum_{j=1}^2p_{jl}(t)e^{\lambda_jt}, l=1,2?$$
So
$$\lambda_1=wi,\lambda_2=-wi$$

I have no idea if I'm going in the right direction or not.

I would really like some help with the specific problem, not necessarily the more generalized proof. I think if I knew how to solve the specific problem given then I'd have a much better understanding.
 
Physics news on Phys.org
joypav said:
Now I am supposed to find the solution of the system?

Do we use that the solution of the system is of the form
$$x_l(t)=\sum_{j=1}^2p_{jl}(t)e^{\lambda_jt}, l=1,2?$$
So
$$\lambda_1=wi,\lambda_2=-wi$$

I have no idea if I'm going in the right direction or not.

I would really like some help with the specific problem, not necessarily the more generalized proof. I think if I knew how to solve the specific problem given then I'd have a much better understanding.

Hi joypav!

The solution should look slightly diffferent.

To solve it, we need to diagonalize $A$ into $BDB^{-1}$, where $D$ is a diagonal matrix with the eigenvalues on its diagonal, and where $B$ is a matrix formed of the corresponding eigenvectors.
So:
$$\dot x = Ax + b = BDB^{-1}x+b$$
Let $\tilde x=B^{-1}x$ and $\tilde b = B^{-1}b$, then:
$$\dot{\tilde x} = B^{-1}\dot x = B^{-1}(BDB^{-1}x+b) = D\tilde x + \tilde b$$
The solutions are $\tilde x_i = C_i e^{\lambda_i t} - \frac{\tilde b_i}{\lambda_i}$.
Thus:
$$x=B\tilde x = B\begin{pmatrix}C_1 e^{\lambda_1 t} - \frac{\tilde b_1}{\lambda_1} \\ \dots \\ C_n e^{\lambda_n t} - \frac{\tilde b_n}{\lambda_n}\end{pmatrix}$$

Is it bounded when $t\to \infty$? (Wondering)
 
Yes, because for each n,
$$\lambda_n\le0$$
So the limit as t goes to infinity will go to 0 for each n?
 
joypav said:
Yes, because for each n,
$$\lambda_n\le0$$
So the limit as t goes to infinity will go to 0 for each n?

It will go to zero if f $Re\ \lambda_n<0$ for all n.
If $Re\ \lambda_n=0$ for some n, we won't reach 0, but we will be bounded.
 
We all know the definition of n-dimensional topological manifold uses open sets and homeomorphisms onto the image as open set in ##\mathbb R^n##. It should be possible to reformulate the definition of n-dimensional topological manifold using closed sets on the manifold's topology and on ##\mathbb R^n## ? I'm positive for this. Perhaps the definition of smooth manifold would be problematic, though.

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 19 ·
Replies
19
Views
2K
  • · Replies 2 ·
Replies
2
Views
4K
Replies
13
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 0 ·
Replies
0
Views
2K