MHB Complex wave forms and fundamentals.... Very very stuck

JPorkins
Messages
6
Reaction score
0
Hi,

My teacher tasked me with a complex waveform question, i have looked for some time to find out how to tackle these, but i still do not know where to begin.
Any help would be greatly appreciated, not look for an answer just a method.

$$i=12sin(40*\pi t) + 4sin(120* \pi t - /3\pi) + 2sin(200 \pi t + /2\pi)$$
determine the
amplitude of the fundamental
the frequency of the fundamental
The order of harmonic components
amplitude of harmonic components
the phase angle of harmonic components

Thanks,
Jack
 
Mathematics news on Phys.org
JPorkins said:
Hi,

My teacher tasked me with a complex waveform question, i have looked for some time to find out how to tackle these, but i still do not know where to begin.
Any help would be greatly appreciated, not look for an answer just a method.

$$i=12sin(40*\pi t) + 4sin(120* \pi t - /3\pi) + 2sin(200 \pi t + /2\pi)$$
determine the
amplitude of the fundamental
the frequency of the fundamental
The order of harmonic components
amplitude of harmonic components
the phase angle of harmonic components

Thanks,
Jack

Hi Jack,

Which definitions does your course material give for those?
And what does your course material say on how to find them?

As a starting point, $\sin(t)$ has a period of $2\pi$, so that $\sin(k t)$ has a period of $\frac{2\pi}{k}$.
Which periods do the respective sine terms have?
Note that if one is a multiple of another, their sum has a period that is equal to the largest one.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top