I Components of *J in Kerr geometry

etotheipi
I am in the middle of a problem for the Kerr geometry, I need to do the integral ##\int_{\mathcal{N}} \star J## over a null hypersurface ##\mathcal{N}## which is a subset of ##\mathcal{H}^+##, where ##J_a = -T_{ab} k^b## and the orientation on ##\mathcal{N}## is ##dv \wedge d\theta \wedge d\chi## so that ##\int_{\mathcal{N}} \star J = \int_{\phi{(\mathcal{N})}} dv d\theta d\chi (\star J)_{v\theta \chi}##. It's supposed to be that ##(\star J)_{v\theta \chi} = (r_+^2 + a^2)\sin\theta \xi^a J_a##, but how do you get this? I tried to work backward from this to ##(\star J)_{v\theta \chi} = \dfrac{1}{3!} g^{ba} \epsilon_{v\theta \chi b} J_a## but not successfully. I had thought that maybe from the Rayachudri equation with ##\hat{\sigma} = \hat{\omega} = 0## that \begin{align*}
0 = R_{ab} \xi^a \xi^b \vert_{\mathcal{H}+} = 8\pi T_{ab} \xi^a \xi^b \vert_{\mathcal{H}+} &= 8\pi T_{ab} \xi^a \left(k^b + \dfrac{a}{r_+^2 + a^2} m^b \right) \vert_{\mathcal{H}+} \\

0 &= \left( -8\pi \xi^a J_a + \dfrac{a}{r_+^2 + a^2} 8\pi T_{ab} m^b \right) \vert_{\mathcal{H}+}
\end{align*}so that ##(r_+^2 + a^2) \sin{\theta} \xi^a J_a \vert_{\mathcal{H}+} = a \sin{\theta} T_{ab} m^b \vert_{\mathcal{H}+}##. But now I don't know what to do with ##T_{ab} m^b##? Thanks
 
Physics news on Phys.org
etotheipi said:
I need to do the integral ##\int_{\mathcal{N}} \star J## over a null hypersurface ##\mathcal{N}## which is a subset of ##\mathcal{H}^+##, where ##J_a = -T_{ab} k^b##
Kerr spacetime is a vacuum spacetime, so ##T_{ab} = 0## everywhere. So this doesn't make sense.

Where is this problem coming from?
 
It is question 6: https://www.damtp.cam.ac.uk/user/examples/3R3c.pdf. For the first part I already wrote that since Penrose diagram would show two lines representing ##\Sigma## and ##\Sigma'## starting at ##i_0## and meeting ##\mathcal{H}^+## in the 2-spheres ##H## and ##H'##, and because on the diagram the subset of ##\mathcal{H}^+## connecting ##H## and ##H'## represents ##\mathcal{N}##, the hypersurfaces ##\Sigma##, ##\Sigma'## and ##\mathcal{N}## bound a spacetime region ##R##, so\begin{align*}E(\Sigma) - E(\Sigma') + E(\mathcal{N}) = - \int_{\partial R} \star J = - \int_R d \star J = 0 \\\end{align*}and so ##E(\Sigma) - E(\Sigma') = -E(\mathcal{N}) = \int_{\mathcal{N}} \star J##. I'm not completely sure that's right, but it seems reasonable. And for (b) the orientation is fixed by Stokes. But I am totally stuck on (c).
 
etotheipi said:
Hm. The question still doesn't make sense to me, since, as I said, Kerr spacetime is a vacuum spacetime, so ##T_{ab} = 0## everywhere, but the question is talking about "matter fields". Perhaps it is talking about some kind of approximation where the behavior of a matter field is being analyzed on a background Kerr spacetime, where the matter field is considered a "test field" which doesn't produce any spacetime curvature on its own.
 
PeterDonis said:
Perhaps it is talking about some kind of approximation where the behavior of a matter field is being analyzed on a background Kerr spacetime, where the matter field is considered a "test field" which doesn't produce any spacetime curvature on its own.
The reference in part (e) to superradiant scattering seems to bear this out, since other treatments of superradiance, such as the one in MTW, take a similar approach.
 
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
I started reading a National Geographic article related to the Big Bang. It starts these statements: Gazing up at the stars at night, it’s easy to imagine that space goes on forever. But cosmologists know that the universe actually has limits. First, their best models indicate that space and time had a beginning, a subatomic point called a singularity. This point of intense heat and density rapidly ballooned outward. My first reaction was that this is a layman's approximation to...
So, to calculate a proper time of a worldline in SR using an inertial frame is quite easy. But I struggled a bit using a "rotating frame metric" and now I'm not sure whether I'll do it right. Couls someone point me in the right direction? "What have you tried?" Well, trying to help truly absolute layppl with some variation of a "Circular Twin Paradox" not using an inertial frame of reference for whatevere reason. I thought it would be a bit of a challenge so I made a derivation or...

Similar threads

Back
Top