I Components of *J in Kerr geometry

etotheipi
I am in the middle of a problem for the Kerr geometry, I need to do the integral ##\int_{\mathcal{N}} \star J## over a null hypersurface ##\mathcal{N}## which is a subset of ##\mathcal{H}^+##, where ##J_a = -T_{ab} k^b## and the orientation on ##\mathcal{N}## is ##dv \wedge d\theta \wedge d\chi## so that ##\int_{\mathcal{N}} \star J = \int_{\phi{(\mathcal{N})}} dv d\theta d\chi (\star J)_{v\theta \chi}##. It's supposed to be that ##(\star J)_{v\theta \chi} = (r_+^2 + a^2)\sin\theta \xi^a J_a##, but how do you get this? I tried to work backward from this to ##(\star J)_{v\theta \chi} = \dfrac{1}{3!} g^{ba} \epsilon_{v\theta \chi b} J_a## but not successfully. I had thought that maybe from the Rayachudri equation with ##\hat{\sigma} = \hat{\omega} = 0## that \begin{align*}
0 = R_{ab} \xi^a \xi^b \vert_{\mathcal{H}+} = 8\pi T_{ab} \xi^a \xi^b \vert_{\mathcal{H}+} &= 8\pi T_{ab} \xi^a \left(k^b + \dfrac{a}{r_+^2 + a^2} m^b \right) \vert_{\mathcal{H}+} \\

0 &= \left( -8\pi \xi^a J_a + \dfrac{a}{r_+^2 + a^2} 8\pi T_{ab} m^b \right) \vert_{\mathcal{H}+}
\end{align*}so that ##(r_+^2 + a^2) \sin{\theta} \xi^a J_a \vert_{\mathcal{H}+} = a \sin{\theta} T_{ab} m^b \vert_{\mathcal{H}+}##. But now I don't know what to do with ##T_{ab} m^b##? Thanks
 
Physics news on Phys.org
etotheipi said:
I need to do the integral ##\int_{\mathcal{N}} \star J## over a null hypersurface ##\mathcal{N}## which is a subset of ##\mathcal{H}^+##, where ##J_a = -T_{ab} k^b##
Kerr spacetime is a vacuum spacetime, so ##T_{ab} = 0## everywhere. So this doesn't make sense.

Where is this problem coming from?
 
It is question 6: https://www.damtp.cam.ac.uk/user/examples/3R3c.pdf. For the first part I already wrote that since Penrose diagram would show two lines representing ##\Sigma## and ##\Sigma'## starting at ##i_0## and meeting ##\mathcal{H}^+## in the 2-spheres ##H## and ##H'##, and because on the diagram the subset of ##\mathcal{H}^+## connecting ##H## and ##H'## represents ##\mathcal{N}##, the hypersurfaces ##\Sigma##, ##\Sigma'## and ##\mathcal{N}## bound a spacetime region ##R##, so\begin{align*}E(\Sigma) - E(\Sigma') + E(\mathcal{N}) = - \int_{\partial R} \star J = - \int_R d \star J = 0 \\\end{align*}and so ##E(\Sigma) - E(\Sigma') = -E(\mathcal{N}) = \int_{\mathcal{N}} \star J##. I'm not completely sure that's right, but it seems reasonable. And for (b) the orientation is fixed by Stokes. But I am totally stuck on (c).
 
etotheipi said:
Hm. The question still doesn't make sense to me, since, as I said, Kerr spacetime is a vacuum spacetime, so ##T_{ab} = 0## everywhere, but the question is talking about "matter fields". Perhaps it is talking about some kind of approximation where the behavior of a matter field is being analyzed on a background Kerr spacetime, where the matter field is considered a "test field" which doesn't produce any spacetime curvature on its own.
 
PeterDonis said:
Perhaps it is talking about some kind of approximation where the behavior of a matter field is being analyzed on a background Kerr spacetime, where the matter field is considered a "test field" which doesn't produce any spacetime curvature on its own.
The reference in part (e) to superradiant scattering seems to bear this out, since other treatments of superradiance, such as the one in MTW, take a similar approach.
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...

Similar threads

Back
Top