I Components of *J in Kerr geometry

Click For Summary
The discussion centers on the integral of the dual current ##\int_{\mathcal{N}} \star J## over a null hypersurface in Kerr geometry, where ##J_a = -T_{ab} k^b##. Participants express confusion regarding the presence of the energy-momentum tensor ##T_{ab}## in a vacuum spacetime, as it is typically zero in Kerr geometry. The integral's formulation and its relation to the Penrose diagram are explored, suggesting that the problem may involve analyzing a "test field" on a Kerr background, which does not create curvature. Additionally, references to superradiant scattering indicate a potential approximation approach to the matter fields involved. The conversation highlights the complexities of integrating in a vacuum spacetime and the nuances of theoretical physics in this context.
etotheipi
I am in the middle of a problem for the Kerr geometry, I need to do the integral ##\int_{\mathcal{N}} \star J## over a null hypersurface ##\mathcal{N}## which is a subset of ##\mathcal{H}^+##, where ##J_a = -T_{ab} k^b## and the orientation on ##\mathcal{N}## is ##dv \wedge d\theta \wedge d\chi## so that ##\int_{\mathcal{N}} \star J = \int_{\phi{(\mathcal{N})}} dv d\theta d\chi (\star J)_{v\theta \chi}##. It's supposed to be that ##(\star J)_{v\theta \chi} = (r_+^2 + a^2)\sin\theta \xi^a J_a##, but how do you get this? I tried to work backward from this to ##(\star J)_{v\theta \chi} = \dfrac{1}{3!} g^{ba} \epsilon_{v\theta \chi b} J_a## but not successfully. I had thought that maybe from the Rayachudri equation with ##\hat{\sigma} = \hat{\omega} = 0## that \begin{align*}
0 = R_{ab} \xi^a \xi^b \vert_{\mathcal{H}+} = 8\pi T_{ab} \xi^a \xi^b \vert_{\mathcal{H}+} &= 8\pi T_{ab} \xi^a \left(k^b + \dfrac{a}{r_+^2 + a^2} m^b \right) \vert_{\mathcal{H}+} \\

0 &= \left( -8\pi \xi^a J_a + \dfrac{a}{r_+^2 + a^2} 8\pi T_{ab} m^b \right) \vert_{\mathcal{H}+}
\end{align*}so that ##(r_+^2 + a^2) \sin{\theta} \xi^a J_a \vert_{\mathcal{H}+} = a \sin{\theta} T_{ab} m^b \vert_{\mathcal{H}+}##. But now I don't know what to do with ##T_{ab} m^b##? Thanks
 
Physics news on Phys.org
etotheipi said:
I need to do the integral ##\int_{\mathcal{N}} \star J## over a null hypersurface ##\mathcal{N}## which is a subset of ##\mathcal{H}^+##, where ##J_a = -T_{ab} k^b##
Kerr spacetime is a vacuum spacetime, so ##T_{ab} = 0## everywhere. So this doesn't make sense.

Where is this problem coming from?
 
It is question 6: https://www.damtp.cam.ac.uk/user/examples/3R3c.pdf. For the first part I already wrote that since Penrose diagram would show two lines representing ##\Sigma## and ##\Sigma'## starting at ##i_0## and meeting ##\mathcal{H}^+## in the 2-spheres ##H## and ##H'##, and because on the diagram the subset of ##\mathcal{H}^+## connecting ##H## and ##H'## represents ##\mathcal{N}##, the hypersurfaces ##\Sigma##, ##\Sigma'## and ##\mathcal{N}## bound a spacetime region ##R##, so\begin{align*}E(\Sigma) - E(\Sigma') + E(\mathcal{N}) = - \int_{\partial R} \star J = - \int_R d \star J = 0 \\\end{align*}and so ##E(\Sigma) - E(\Sigma') = -E(\mathcal{N}) = \int_{\mathcal{N}} \star J##. I'm not completely sure that's right, but it seems reasonable. And for (b) the orientation is fixed by Stokes. But I am totally stuck on (c).
 
etotheipi said:
Hm. The question still doesn't make sense to me, since, as I said, Kerr spacetime is a vacuum spacetime, so ##T_{ab} = 0## everywhere, but the question is talking about "matter fields". Perhaps it is talking about some kind of approximation where the behavior of a matter field is being analyzed on a background Kerr spacetime, where the matter field is considered a "test field" which doesn't produce any spacetime curvature on its own.
 
PeterDonis said:
Perhaps it is talking about some kind of approximation where the behavior of a matter field is being analyzed on a background Kerr spacetime, where the matter field is considered a "test field" which doesn't produce any spacetime curvature on its own.
The reference in part (e) to superradiant scattering seems to bear this out, since other treatments of superradiance, such as the one in MTW, take a similar approach.
 
The Poynting vector is a definition, that is supposed to represent the energy flow at each point. Unfortunately, the only observable effect caused by the Poynting vector is through the energy variation in a volume subject to an energy flux through its surface, that is, the Poynting theorem. As a curl could be added to the Poynting vector without changing the Poynting theorem, it can not be decided by EM only that this should be the actual flow of energy at each point. Feynman, commenting...

Similar threads