MHB Composition Series for Group Order 30

Pratibha
Messages
5
Reaction score
0
How to find the composition series of a group of order 30
 
Physics news on Phys.org
Hi,

It may depend on the caharacteristics of the group.

If your group it's abelian then use the Abelian's groups structure theorem.

If not, I think we need to know something more.
 
what is statement of abelian structure theorem?:confused:
 
This may be beyond your knowledge, but here goes:
A group of order 30 has a normal subgroup of index 2 (Any group of even order with a cyclic Sylow 2 subgroup has a normal subgroup of index 2; proved by considering the Cayley representation of G as a permutation group.) So let H be normal of order 15. By the Sylow theorems H has a normal Sylow 5 subgroup K (cyclic) and a normal Sylow 3 subgoup L. So one composition series (actually a chief series--all subgroups in series are normal in G) is:
$$<1>\,\trianglelefteq L\trianglelefteq H\trianglelefteq G$$ with the factors cyclic of orders 2, 3 and 5. The Jordan-Holder theorem says all composition series have the same factors.
 
Every finitely generated abelian group $G$ is isomorphic to a direct product

$\Bbb{Z}^{n}\oplus \Bbb{Z}_{a_{1}}\oplus \ldots \oplus \Bbb{Z}_{a_{k}}$

Moreover, we can order it in such a way that $a_{i}$ divides $a_{i+1}$ for every $i=1,\ldots, k-1$

PS: It's easier than I thought using the way johng has just posted
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top