B Compound Angle Formula: Solving Double Angle Equations

  • Thread starter Thread starter Farnaz
  • Start date Start date
  • Tags Tags
    Angle Formula
Click For Summary
The discussion centers on the confusion surrounding the application of the double angle formula for sine, particularly with the example of sin(19pi/12). Participants highlight that multiple angle combinations can yield different results, but the goal is to find combinations that lead to exact values. It is emphasized that certain angles, like sin(3pi/4) and cos(2pi/3), provide straightforward computations, while others may not. The suggestion is made to express sin(19pi/12) in a way that simplifies the calculation, such as using sin(pi + 7pi/12). Overall, the focus is on identifying effective angle combinations for accurate sine evaluations.
Farnaz
Messages
1
Reaction score
0
TL;DR
sin(19pi/2)=?
Hi, I am confused about how to handle the double angle formula. For example, sin(19pi/12)= sin(9pi/12+10pi/12) but there can be many other options too. like sin(18pi/12+pi/12) or sin(15pi/12+4pi/12)..every time I am getting different answers. Can anyone please how find the right one? Thanks
 
Mathematics news on Phys.org
Can you give an example where you get a different answer? And what formula are you using to expand sin(A +B)?
 
Farnaz said:
Summary:: sin(19pi/2)=?

You wrote ##\sin(\frac{19\pi}2)## above, but are asking about ##\sin(\frac{19\pi}{12})## below.
Farnaz said:
Hi, I am confused about how to handle the double angle formula. For example, sin(19pi/12)= sin(9pi/12+10pi/12) but there can be many other options too. like sin(18pi/12+pi/12) or sin(15pi/12+4pi/12)..every time I am getting different answers. Can anyone please how find the right one? Thanks
The "right one" is a combination that you can do something with, assuming the answers are to be exact rather than approximate ones.
For example, ##\sin(9\pi/12 + 10\pi/12) = \sin(3\pi/4 + 5\pi/6)## is better than your other choices here because the angles are such that the sine and cosine terms all have exact answers.
 
^I don't know what you mean by exact, none of the above is approximation.

I don't understand the op either, but I would guess he/she has two equal numbers and did not recognize them as such.

For example something like
$$\sin \left( \frac{\pi}{12} \right)=\frac{\sqrt{2-\sqrt{3}}}{2}$$
$$\sin \left( \frac{\pi}{12} \right)=\frac{\sqrt{6}-\sqrt{2}}{4}$$
these are equal even though they look different
 
lurflurf said:
I don't know what you mean by exact, none of the above is approximation.
I assume you're quoting what I said. The context for my remark was that the sines and cosines of certain angles can be calculated exactly and simply; for example, ##\sin(3\pi/4) = \sqrt 2/2## and ##\cos(2\pi/3) = -1/2. The trig functions of many other angles don't lend themselves such straightforward computation.
 
I would start with sin(19pi/12) = sin(pi + 7pi/12) = ... which leads to nice simple expressions with a suitable way to write 7pi/12 as sum.
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
8
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
1K
Replies
8
Views
3K
  • · Replies 10 ·
Replies
10
Views
12K
  • · Replies 2 ·
Replies
2
Views
1K