MHB Compute $a_{1996}$ for $\prod_{k=1}^{1996} (1+kx^{3^k})$

  • Thread starter Thread starter anemone
  • Start date Start date
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $\displaystyle \prod_{k=1}^{1996} (1+kx^{3^k})=1+a_1x^{n_1}+a_2x^{n_2}+\cdots+a_mx^{n_m}$, where $a_1,\,a_2,\,\cdots$ are nonzero and $n_1<n_2<\cdots<n_m$.

Compute $a_{1996}$.
 
Mathematics news on Phys.org
Note: solution not verified, possible off-by-one error, but it definitely works.

We express $a_n$ as a recurrence by induction on $k$. First consider the base case $k = 1$, which gives us $a_0 = a_1 = 1$. Suppose that for some $k - 1 \in \mathbb{N}$, we have nonzero polynomial coefficients $a_0, a_1, \cdots, a_{n - 1}$ for some $n$, then it follows that:
$$(1 + k x^{3^k}) \sum_{i = 0}^{n - 1} a_i x^{n_i} = \sum_{i = 0}^{n - 1} a_i x^{n_i} + k \sum_{i = 0}^{n - 1} a_i x^{3^k + n_i}$$
We observe that $3^k$ is larger than all exponents $n_i$ which are at most $3^k - 1$, being a sum of powers of $3$ less than $k$, and so the coefficients $a_0$ to $a_{n - 1}$ remain unchanged by the multiplication by $1 + k x^{3^k}$. Furthermore, as a result the polynomial for $k$ must then have $2n$ nonzero terms (twice as many). These two facts together allows us to derive $k$ from $n$ as $k = \lceil \log_2(n + 1) \rceil$ and hence express $a_n$ as a simple recurrence:
$$a_n = k a_{n - 2^{k - 1}} ~ ~ ~ \text{where} ~ k = \lceil \log_2(n + 1) \rceil, a_0 = a_1 = 1$$
So that:
$$a_{1996} = 11 a_{1996 - 1024} = 11 a_{972}$$
$$a_{972} = 10 a_{972 - 512} = 10 a_{460}$$
$$a_{460} = 9 a_{460 - 256} = 9 a_{204}$$
$$a_{204} = 8 a_{204 - 128} = 8 a_{76}$$
$$a_{76} = 7 a_{76 - 64} = 7 a_8$$
$$a_{8} = 4 a_{8 - 8} = 4 a_0$$
And so we conclude that:
$$a_{1996} = 11 \times 10 \times 9 \times 8 \times 7 \times 4 \times a_0 = 221760$$
 
Amended solution:

We express $a_n$ as a recurrence by induction on $k$. First consider the base case $k = 1$, which gives us $a_0 = a_1 = 1$. Suppose that for some $k - 1 \in \mathbb{N}$, we have nonzero polynomial coefficients $a_0, a_1, \cdots, a_{n - 1}$ for some $n$, then it follows that:
$$(1 + k x^{3^k}) \sum_{i = 0}^{n - 1} a_i x^{n_i} = \sum_{i = 0}^{n - 1} a_i x^{n_i} + k \sum_{i = 0}^{n - 1} a_i x^{3^k + n_i}$$
We observe that $3^k$ is larger than all exponents $n_i$ which are at most $3^k - 1$, being a sum of powers of $3$ less than $k$, and so the coefficients $a_0$ to $a_{n - 1}$ remain unchanged by the multiplication by $1 + k x^{3^k}$. Furthermore, as a result the polynomial for $k$ must then have $2n$ nonzero terms (twice as many). These two facts together allows us to derive $k$ from $n$ as $k = \lceil \log_2(n + 1) \rceil$ and hence express $a_n$ as a simple recurrence:
$$a_n = k a_{n - 2^{k - 1}} ~ ~ ~ \text{where} ~ k = \lceil \log_2(n + 1) \rceil, a_0 = a_1 = 1$$
So that:
$$a_{1996} = 11 a_{1996 - 1024} = 11 a_{972}$$
$$a_{972} = 10 a_{972 - 512} = 10 a_{460}$$
$$a_{460} = 9 a_{460 - 256} = 9 a_{204}$$
$$a_{204} = 8 a_{204 - 128} = 8 a_{76}$$
$$a_{76} = 7 a_{76 - 64} = 7 a_{12}$$
$$a_{12} = 4 a_{12 - 8} = 4 a_4$$
$$a_{4} = 3 a_{4 - 4} = 3 a_0$$
And so we conclude that:
$$a_{1996} = 11 \times 10 \times 9 \times 8 \times 7 \times 4 \times 3 \times a_0 = 665280$$
 
Bacterius said:
Amended solution:

We express $a_n$ as a recurrence by induction on $k$. First consider the base case $k = 1$, which gives us $a_0 = a_1 = 1$. Suppose that for some $k - 1 \in \mathbb{N}$, we have nonzero polynomial coefficients $a_0, a_1, \cdots, a_{n - 1}$ for some $n$, then it follows that:
$$(1 + k x^{3^k}) \sum_{i = 0}^{n - 1} a_i x^{n_i} = \sum_{i = 0}^{n - 1} a_i x^{n_i} + k \sum_{i = 0}^{n - 1} a_i x^{3^k + n_i}$$
We observe that $3^k$ is larger than all exponents $n_i$ which are at most $3^k - 1$, being a sum of powers of $3$ less than $k$, and so the coefficients $a_0$ to $a_{n - 1}$ remain unchanged by the multiplication by $1 + k x^{3^k}$. Furthermore, as a result the polynomial for $k$ must then have $2n$ nonzero terms (twice as many). These two facts together allows us to derive $k$ from $n$ as $k = \lceil \log_2(n + 1) \rceil$ and hence express $a_n$ as a simple recurrence:
$$a_n = k a_{n - 2^{k - 1}} ~ ~ ~ \text{where} ~ k = \lceil \log_2(n + 1) \rceil, a_0 = a_1 = 1$$
So that:
$$a_{1996} = 11 a_{1996 - 1024} = 11 a_{972}$$
$$a_{972} = 10 a_{972 - 512} = 10 a_{460}$$
$$a_{460} = 9 a_{460 - 256} = 9 a_{204}$$
$$a_{204} = 8 a_{204 - 128} = 8 a_{76}$$
$$a_{76} = 7 a_{76 - 64} = 7 a_{12}$$
$$a_{12} = 4 a_{12 - 8} = 4 a_4$$
$$a_{4} = 3 a_{4 - 4} = 3 a_0$$
And so we conclude that:
$$a_{1996} = 11 \times 10 \times 9 \times 8 \times 7 \times 4 \times 3 \times a_0 = 665280$$

Thanks for participating, Bacterius! Yes, your amended solution is correct and the subtraction error was spotted by Opalg and so I want to thank Opalg because he has helped me numerous times in the past even if he was busy at the time.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top