MHB Compute Ideal Generated by Matrix 3x3

  • Thread starter Thread starter Fermat1
  • Start date Start date
Click For Summary
The ideal generated by the matrix $\begin{bmatrix}1&0&0\\0&0&0\\0&0&0 \end{bmatrix}$ consists of all linear combinations of rank 1 matrices, which alone do not form an ideal since they lack closure under addition. To form the full ideal, sums of these rank 1 matrices must be included, leading to the conclusion that the ideal encompasses all $3 \times 3$ matrices. The discussion clarifies that any elementary matrix can be produced through appropriate multiplications, reinforcing that the ideal generated is indeed the entire algebra of $3 \times 3$ matrices. Ultimately, the ideal generated by any nonzero element in this context is the whole algebra, as there are no nontrivial ideals in the algebra of $3 \times 3$ matrices.
Fermat1
Messages
180
Reaction score
0
Compute the ideal generated by $\begin{bmatrix}1&0&0\\0&0&0\\0&0&0 \end{bmatrix}$

My answer:
$\begin{bmatrix}a&b&c\\d&e&f\\g&h&i \end{bmatrix}$$\begin{bmatrix}1&0&0\\0&0&0\\0&0&0 \end{bmatrix}$$\begin{bmatrix}a'&b'&c'\\d'&e'&f'\\g'&h'&i' \end{bmatrix}$=$\begin{bmatrix}aa'&ab'&ac'\\da'&db'&dc'\\ga'&gb'&gc' \end{bmatrix}$.

Is this correct, and is there a nicer way to express the matrices in the ideal?
 
Physics news on Phys.org
Fermat said:
Compute the ideal generated by $\begin{bmatrix}1&0&0\\0&0&0\\0&0&0 \end{bmatrix}$

My answer:
$\begin{bmatrix}a&b&c\\d&e&f\\g&h&i \end{bmatrix}$$\begin{bmatrix}1&0&0\\0&0&0\\0&0&0 \end{bmatrix}$$\begin{bmatrix}a'&b'&c'\\d'&e'&f'\\g'&h'&i' \end{bmatrix}$=$\begin{bmatrix}aa'&ab'&ac'\\da'&db'&dc'\\ga'&gb'&gc' \end{bmatrix}$.

Is this correct, and is there a nicer way to express the matrices in the ideal?
That is a correct, but not very informative, way of saying that the ideal is the whole algebra of $3\times3$ matrices. In fact, that algebra has no nontrivial ideals, so the ideal generated by any nonzero element is the whole algebra.

Edit. As later comments point out, you only get the rank 1 matrices this way. These do not form an ideal: you then need to take sums of them to get the full ideal.
 
Last edited:
Wouldn't the rank of the matrix always be 1?
 
The product given in the first post is indeed of rank one, yes.

However, any elementary matrix $E_{ij}$ can be produced by such a product by multiplying by $E_{1j}$ on the right, and $E_{i1}$ on the left.

Since any possible matrix can be obtained by $R$-linear combinations of the $E_{ij}$ and all such $R$-linear combinations of elements of the ideal are in the ideal, we obtain all 3x3 matrices.

Perhaps more elegantly, we have (writing $J$ for the ideal):

$E_{11},E_{22},E_{33} \in J \implies I = E_{11} + E_{22} + E_{33} \in J \implies J = \text{Mat}_3(R)$

where $R$ is the commutative ring we are taking our matrix entries from (which may, or may not be, a field, the original poster does not say).
 
Opalg said:
That is a correct, but not very informative, way of saying that the ideal is the whole algebra of $3\times3$ matrices. In fact, that algebra has no nontrivial ideals, so the ideal generated by any nonzero element is the whole algebra.

Edit. As later comments point out, you only get the rank 1 matrices this way. These do not form an ideal: you then need to take sums of them to get the full ideal.

So what's the generated ideal then? I thought by definition the generated ideal is the set of things of the form axa'
 
Fermat said:
So what's the generated ideal then? I thought by definition the generated ideal is the set of things of the form axa'

Ideals must be closed under addition...
 
I am studying the mathematical formalism behind non-commutative geometry approach to quantum gravity. I was reading about Hopf algebras and their Drinfeld twist with a specific example of the Moyal-Weyl twist defined as F=exp(-iλ/2θ^(μν)∂_μ⊗∂_ν) where λ is a constant parametar and θ antisymmetric constant tensor. {∂_μ} is the basis of the tangent vector space over the underlying spacetime Now, from my understanding the enveloping algebra which appears in the definition of the Hopf algebra...

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
2
Views
3K
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K