MHB Compute Integrals: Integrate (z^3-6z^2+4)dz from -1+i to 1

  • Thread starter Thread starter asqw121
  • Start date Start date
  • Tags Tags
    Integrals
asqw121
Messages
5
Reaction score
0
Integrate (z^3-6z^2+4)dz where the function is any curve joining -1+i to 1. Z is complex number
 
Physics news on Phys.org
Please post your progress so far so our helpers know exactly where you are stuck or what you may be doing wrong. (Nod)
 
I am trying to first separate them to integrate individual z^3dz, -6z^2dz and 4dz.

Line integral γ(t)= t*i+(1-t)*(-1-+i)
 
There is no need to find a parametric representation of the curve because the function you are integrating has an anti derivative , indeed it is a polynomial . By independence of the path , the integral only depends on the initial and final points .
 
A sphere as topological manifold can be defined by gluing together the boundary of two disk. Basically one starts assigning each disk the subspace topology from ##\mathbb R^2## and then taking the quotient topology obtained by gluing their boundaries. Starting from the above definition of 2-sphere as topological manifold, shows that it is homeomorphic to the "embedded" sphere understood as subset of ##\mathbb R^3## in the subspace topology.
Back
Top