MHB Compute Line Integral with Cauchy-Goursat Theorem

  • Thread starter Thread starter Fernando Revilla
  • Start date Start date
  • Tags Tags
    Theorem
AI Thread Summary
The discussion centers on computing the line integral ∫a (z^2+3z+4)dz over the circle |z|=2, oriented counterclockwise. The function f(z) = z^2 + 3z + 4 is holomorphic in the complex plane, allowing the application of the Cauchy-Goursat theorem, which states that the integral over a closed curve in a simply connected domain is zero. The parametric equations for the circle are provided, confirming that the integral evaluates to zero without needing the theorem. The conclusion emphasizes that both methods yield the same result, reinforcing the theorem's validity in this context.
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
I quote a question from Yahoo! Answers

Compute the following line integral. ∫a (z^2+3z+4)dz, where a is the circle |z|=2 oriented c-clockwise?
I'm not sure what the circle |z|=2 means, so I can't parametrize the circle.

I have given a link to the topic there so the OP can see my response.
 
Mathematics news on Phys.org
The function $f(z)=z^2+3z+4$ is holomorphic on $D=\mathbb{C}$ (simply connected) and $\gamma\equiv|z|=2$ (circle with center at the origin and radius 2) is contained in $D$. According to the Cauchy-Goursat theorem, $\int_{\gamma}f(z)dz=0$. Without using the Cauchy-Goursat theorem: we have the differential form: $$w=f(z)dz=(u+iv)(dx+idy)=\ldots=P(x,y)dx+Q(x,y)dy$$ The parametric equations of $\gamma$ are $x=2\cos t,\;y=2\sin t$ with $t\in[0,2\pi]$. Then, $$\int_{\gamma}f(z)dz=\int_{\gamma}w=\int_0^{2\pi}P(x(t),y(t))x'(t)dt+Q(x(t),y(t))y'(t)dt=\ldots=0$$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top