MHB Compute $\sum_{n=1}^{2020} (f(n)-g(n))$

  • Thread starter Thread starter anemone
  • Start date Start date
AI Thread Summary
The discussion centers on calculating the sum $\sum_{n=1}^{2020} (f(n)-g(n))$, where $f(n)$ represents the sum of all positive integers $b$ that allow integer solutions for the quadratic equation $x^2 + bx + n = 0$, and $g(n)$ represents the sum of all positive integers $c$ for which the linear equation $cx + n = 0$ has integer solutions. The key challenge is to determine the conditions under which these equations yield integer solutions and how to effectively compute the difference between $f(n)$ and $g(n)$. Participants explore the implications of integer solutions on the values of $b$ and $c$, leading to insights on the nature of $f(n)$ and $g(n)$. The final goal is to evaluate the overall sum from 1 to 2020, highlighting the relationship between the two functions. The discussion emphasizes the mathematical properties and calculations necessary to arrive at the solution.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
For non-zero integers $n$, let $f(n)$ be the sum of all positive integers $b$ for which all solutions $x$ to $x^2+bx+n=0$ are integers and let $g(n)$ be the sum of all positive integers $c$ for which all solutions $x$ to $cx+n=0$ are integers. Compute $\displaystyle \sum_{n=1}^{2020} (f(n)-g(n))$.
 
Mathematics news on Phys.org
anemone said:
For non-zero integers $n$, let $f(n)$ be the sum of all positive integers $b$ for which all solutions $x$ to $x^2+bx+n=0$ are integers and let $g(n)$ be the sum of all positive integers $c$ for which all solutions $x$ to $cx+n=0$ are integers. Compute $\displaystyle \sum_{n=1}^{2020} (f(n)-g(n))$.
The product of the solutions of $x^2 + bx + n = 0$ is $n$. So if both solutions are integers then they must form a factorisation of $n$. Also, if the solution of $cx+n=0$ is an integer then it must be a factor of $n$. So the ingredients of the sums $f(n)$ and $g(n)$ must all arise from factorisations of $n$.

If $n=st$ is a factorisation of $n$ as a product of two positive integers then the solutions of $x^2 + (s+t)x + n = 0$ are $x= -s$ and $x = -t$. So $b=s+t$ is one of the values of $b$ that go into the sum $f(n)$. Also, $x=-t$ is the solution of $sx + n = 0$ and $x=-s$ is the solution of $tx+n=0$. So $s$ and $t$ are two of the values of $c$ that go into the sum $g(n)$. Therefore the net contribution of the factorisation $n=st$ to $f(n) - g(n)$ is $(s+t) - (s+t) = 0$. Summing over all possible factorisations of $n$, you see that $f(n) - g(n) = 0$.

But that argument goes wrong if $n$ is a perfect square, because the factorisation $n = s^2$ gives a contribution $2s$ to $f(n)$, but it only contributes $s$ to $g(n)$. Therefore $f(s^2) - g(s^2) = s$.

The largest square that is less than $2020$ is $44^2 = 1996$. Therefore $$ \sum_{n=1}^{2020} (f(n)-g(n)) = \sum_{s=1}^{44}s = \tfrac12*44*45 = 990.$$
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Replies
1
Views
1K
Replies
9
Views
2K
Replies
1
Views
1K
Replies
1
Views
1K
Replies
1
Views
1K
Replies
2
Views
1K
Back
Top