MHB Compute $\sum_{n=1}^{2020} (f(n)-g(n))$

  • Thread starter Thread starter anemone
  • Start date Start date
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
For non-zero integers $n$, let $f(n)$ be the sum of all positive integers $b$ for which all solutions $x$ to $x^2+bx+n=0$ are integers and let $g(n)$ be the sum of all positive integers $c$ for which all solutions $x$ to $cx+n=0$ are integers. Compute $\displaystyle \sum_{n=1}^{2020} (f(n)-g(n))$.
 
Mathematics news on Phys.org
anemone said:
For non-zero integers $n$, let $f(n)$ be the sum of all positive integers $b$ for which all solutions $x$ to $x^2+bx+n=0$ are integers and let $g(n)$ be the sum of all positive integers $c$ for which all solutions $x$ to $cx+n=0$ are integers. Compute $\displaystyle \sum_{n=1}^{2020} (f(n)-g(n))$.
The product of the solutions of $x^2 + bx + n = 0$ is $n$. So if both solutions are integers then they must form a factorisation of $n$. Also, if the solution of $cx+n=0$ is an integer then it must be a factor of $n$. So the ingredients of the sums $f(n)$ and $g(n)$ must all arise from factorisations of $n$.

If $n=st$ is a factorisation of $n$ as a product of two positive integers then the solutions of $x^2 + (s+t)x + n = 0$ are $x= -s$ and $x = -t$. So $b=s+t$ is one of the values of $b$ that go into the sum $f(n)$. Also, $x=-t$ is the solution of $sx + n = 0$ and $x=-s$ is the solution of $tx+n=0$. So $s$ and $t$ are two of the values of $c$ that go into the sum $g(n)$. Therefore the net contribution of the factorisation $n=st$ to $f(n) - g(n)$ is $(s+t) - (s+t) = 0$. Summing over all possible factorisations of $n$, you see that $f(n) - g(n) = 0$.

But that argument goes wrong if $n$ is a perfect square, because the factorisation $n = s^2$ gives a contribution $2s$ to $f(n)$, but it only contributes $s$ to $g(n)$. Therefore $f(s^2) - g(s^2) = s$.

The largest square that is less than $2020$ is $44^2 = 1996$. Therefore $$ \sum_{n=1}^{2020} (f(n)-g(n)) = \sum_{s=1}^{44}s = \tfrac12*44*45 = 990.$$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
1
Views
1K
Replies
9
Views
2K
Replies
1
Views
1K
Replies
1
Views
1K
Replies
1
Views
1K
Replies
2
Views
1K
Back
Top