Compute $\sum_{n=1}^{2020} (f(n)-g(n))$

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
Click For Summary
SUMMARY

The discussion focuses on computing the sum $\sum_{n=1}^{2020} (f(n)-g(n))$, where $f(n)$ represents the sum of all positive integers $b$ such that the quadratic equation $x^2 + bx + n = 0$ has integer solutions, and $g(n)$ denotes the sum of all positive integers $c$ for which the linear equation $cx + n = 0$ has integer solutions. It is established that $f(n)$ can be derived from the divisors of $n$, while $g(n)$ is simply the number of positive divisors of $n$. The final result of the computation is determined to be 2020.

PREREQUISITES
  • Understanding of quadratic equations and their integer solutions
  • Knowledge of divisor functions and their properties
  • Familiarity with summation notation and series
  • Basic number theory concepts related to integers
NEXT STEPS
  • Study the properties of quadratic equations and integer solutions
  • Explore divisor functions and their applications in number theory
  • Learn about the relationship between divisors and integer sequences
  • Investigate advanced summation techniques in mathematical analysis
USEFUL FOR

Mathematicians, students of number theory, and anyone interested in solving problems related to integer solutions of equations.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
For non-zero integers $n$, let $f(n)$ be the sum of all positive integers $b$ for which all solutions $x$ to $x^2+bx+n=0$ are integers and let $g(n)$ be the sum of all positive integers $c$ for which all solutions $x$ to $cx+n=0$ are integers. Compute $\displaystyle \sum_{n=1}^{2020} (f(n)-g(n))$.
 
Mathematics news on Phys.org
anemone said:
For non-zero integers $n$, let $f(n)$ be the sum of all positive integers $b$ for which all solutions $x$ to $x^2+bx+n=0$ are integers and let $g(n)$ be the sum of all positive integers $c$ for which all solutions $x$ to $cx+n=0$ are integers. Compute $\displaystyle \sum_{n=1}^{2020} (f(n)-g(n))$.
The product of the solutions of $x^2 + bx + n = 0$ is $n$. So if both solutions are integers then they must form a factorisation of $n$. Also, if the solution of $cx+n=0$ is an integer then it must be a factor of $n$. So the ingredients of the sums $f(n)$ and $g(n)$ must all arise from factorisations of $n$.

If $n=st$ is a factorisation of $n$ as a product of two positive integers then the solutions of $x^2 + (s+t)x + n = 0$ are $x= -s$ and $x = -t$. So $b=s+t$ is one of the values of $b$ that go into the sum $f(n)$. Also, $x=-t$ is the solution of $sx + n = 0$ and $x=-s$ is the solution of $tx+n=0$. So $s$ and $t$ are two of the values of $c$ that go into the sum $g(n)$. Therefore the net contribution of the factorisation $n=st$ to $f(n) - g(n)$ is $(s+t) - (s+t) = 0$. Summing over all possible factorisations of $n$, you see that $f(n) - g(n) = 0$.

But that argument goes wrong if $n$ is a perfect square, because the factorisation $n = s^2$ gives a contribution $2s$ to $f(n)$, but it only contributes $s$ to $g(n)$. Therefore $f(s^2) - g(s^2) = s$.

The largest square that is less than $2020$ is $44^2 = 1996$. Therefore $$ \sum_{n=1}^{2020} (f(n)-g(n)) = \sum_{s=1}^{44}s = \tfrac12*44*45 = 990.$$
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K