MHB Compute the downwards flux of F

  • Thread starter Thread starter Uniman
  • Start date Start date
  • Tags Tags
    Flux
Uniman
Messages
11
Reaction score
0

Attachments

  • Screen Shot 2012-10-19 at 6.19.57 PM.png
    Screen Shot 2012-10-19 at 6.19.57 PM.png
    11.3 KB · Views: 78
Mathematics news on Phys.org
Uniman said:
https://www.physicsforums.com/attachments/418
The work done so far

https://www.dropbox.com/s/qmfidqot3nttlw5/phpQd8GGH.png
https://www.dropbox.com/s/xn4t5m2aleopwy7/phpldZ0KX.png

Is the answer correct...

Hi Univman, :)

The links to your work on the problem seem not to work. Anyway, you have been given the vector field,

\[\mathbf{F}(x,y,z)=\mathbf{i} \cos\left( \frac{y}{z}\right)-\mathbf{j} \frac{x}{z} \sin \left(\frac{y}{z}\right)+\mathbf{k} \frac{xy}{z^2} \sin \left( \frac{y}{z} \right)\]

The downward flux of \(\mathbf{F}\) over \(S\) is given by,

\[\iint_{S}\mathbf{F}.(-\mathbf{k})\,dS=-\iint_{S}\mathbf{F}.\mathbf{k}\,dS=-\iint_{S}\frac{xy}{z^2}\sin\left(\frac{y}{z}\right)\,dS\]

On the surface \(S\); \(z=1\). Therefore we have,

\[\iint_{S}\mathbf{F}.(-\mathbf{k})\,dS=-\iint_{S}xy\sin y\,dS=-\int_{x=0}^{1}\int_{y=0}^{\pi}xy\sin y\,dy\,dx\]

Hope you can continue. :)

Kind Regards,
Sudharaka.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top