Computing projectile's maximum height and range.

Click For Summary

Discussion Overview

The discussion revolves around the computation of a projectile's maximum height and range, considering various factors such as gravitational acceleration and horizontal acceleration due to wind. Participants explore different methods and equations related to projectile motion, including the effects of initial velocity and angle of launch.

Discussion Character

  • Exploratory
  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • Some participants suggest treating the problem as a differential equations issue, noting the downward acceleration of gravity and a constant horizontal acceleration due to wind.
  • One participant outlines the independence of vertical and horizontal motion, stating that the maximum height remains unchanged under certain conditions.
  • Equations for maximum height (H) and range (R) are presented, with some participants deriving H as \( H = \frac{v_{0y}^2}{2g} \) and R as \( R = \frac{(V_0)^2}{g} \cdot \sin{(2\cdot \theta_0)} \).
  • Concerns are raised about the clarity of provided answers, particularly regarding the interpretation of acceleration and its impact on height and range.
  • Some participants express confusion about the implications of "prior to acceleration" and "after acceleration," leading to discussions about the nature of acceleration in projectile motion.

Areas of Agreement / Disagreement

Participants express differing views on the effects of horizontal acceleration on maximum height and range, with no consensus reached on the interpretation of certain terms and equations. The discussion remains unresolved regarding the clarity of the problem and the implications of acceleration.

Contextual Notes

Participants mention various assumptions, such as the projectile being launched and landing at the same height, and the independence of vertical and horizontal motions. There are unresolved questions about the role of horizontal acceleration and its effect on the calculations.

WMDhamnekar
MHB
Messages
378
Reaction score
30
Hi,

Here is the question.

1608891252345.png


Answer given is d. But i don't understand how is that computed? I am working on this question. Meanwhile any member knowing the correct answer may help me in finding out correct answer.
 
Mathematics news on Phys.org
What level course is this for? There are several different methods that can be used depending on your "math sophistication". I would treat this as a differential equations problem because the problem gives the acceleration and acceleration is the second derivative of position. This is a trajectory problem so the downward acceleration is that of gravity, -g. We are also told that there is a "constant horizontal acceleration, g/4, due to the wind.

Take x to be the horizontal distance from the starting position and take y to be the horizontal distance from the starting point.

First do the calculation ignoring the wind so that [math]\frac{d^2x}{dt^2}= 0[/math] and [math]\frac{d^2y}{dt^2}= -g[/math]. Taking the range and height to be "R" and "H" what must be the initial velocity vector have been?

Then we have [math]\frac{d^2x}{dt^2}= g/4[/math] and [math]\frac{d^2y}{dt^2}= -g[/math]. Integrate each of those to get the velocity vector and then integrate again to get the position. Each integration will give "constants of integration". Determine their values by using the facts that the initial position is (0, 0) and the known initial velocity.
 
Assuming the projectile is launched and lands at the same height ...

Motion in the vertical & horizontal directions are independent. Since acceleration in the vertical is unchanged, the maximum height is also unchanged.
Further, at the top of the projectile’s trajectory, the y-component of velocity is zero ...

$0 = v_{fy} = v_{0y} - gt \implies t_{top} = \dfrac{v_{0y}}{g}$

therefore, $H = v_{0y} \cdot t_{top} - \dfrac{g}{2} \cdot t_{top}^2$

substituting for $t_{top}$ yields $H = \dfrac{v_{0y}^2}{2g}$

with no acceleration in the horizontal direction, $R=v_x \cdot t_{total}$

note $t_{total} = 2t_{top}$

with acceleration in the x-direction ...

$\Delta x = v_{0x} \cdot t_{total} + \dfrac{1}{2}a_x \cdot t_{total}^2$

$\Delta x = R + \dfrac{g}{8} \cdot \dfrac{4v_{0y}^2}{g^2} = R + \dfrac{v_{0y}^2}{2g} = R+H$
 
Country Boy said:
What level course is this for? There are several different methods that can be used depending on your "math sophistication". I would treat this as a differential equations problem because the problem gives the acceleration and acceleration is the second derivative of position. This is a trajectory problem so the downward acceleration is that of gravity, -g. We are also told that there is a "constant horizontal acceleration, g/4, due to the wind.

Take x to be the horizontal distance from the starting position and take y to be the horizontal distance from the starting point.

First do the calculation ignoring the wind so that [math]\frac{d^2x}{dt^2}= 0[/math] and [math]\frac{d^2y}{dt^2}= -g[/math]. Taking the range and height to be "R" and "H" what must be the initial velocity vector have been?

Then we have [math]\frac{d^2x}{dt^2}= g/4[/math] and [math]\frac{d^2y}{dt^2}= -g[/math]. Integrate each of those to get the velocity vector and then integrate again to get the position. Each integration will give "constants of integration". Determine their values by using the facts that the initial position is (0, 0) and the known initial velocity.
Hello,
Thanks for your guidance.

1609052578930.png


Above diagram depicts projectile motion. Let us assume following variables
1) $X_0$ = Initial X-position
2)X=Final X-position $X=X_0 + V_0\cdot \cos{\theta_0}\cdot t$
3)$Y_0$= Initial Y-position
4)Y= Final Y-position $Y=Y_0 + V_0\cdot \sin{\theta_0}\cdot t -\frac12 \cdot g \cdot t^2$
5)$\theta_0$= initial angle
6)$V_0$=Initial velocity
7)$V_x$=X-velocity $V_x= V_0\cdot \cos{\theta_0}$
8)$V_y$=Y-velocity $V_y=V_0\cdot \sin{\theta_0}-g\cdot t$
9)t= time
10) R=Horizontal range. $R=\frac{(V_0)^2}{g}\cdot \sin{(2\cdot \theta_0)}$

Now, how we can proceed further to answer this question under this method? Following is the answer, I am provided with.

1609053618653.png


I don't understand this answer because of illegible handwriting. Would anyone explain me this answer in simple terms?
 
Last edited:
skeeter said:
Assuming the projectile is launched and lands at the same height ...

Motion in the vertical & horizontal directions are independent. Since acceleration in the vertical is unchanged, the maximum height is also unchanged.
Further, at the top of the projectile’s trajectory, the y-component of velocity is zero ...

$0 = v_{fy} = v_{0y} - gt \implies t_{top} = \dfrac{v_{0y}}{g}$

therefore, $H = v_{0y} \cdot t_{top} - \dfrac{g}{2} \cdot t_{top}^2$

substituting for $t_{top}$ yields $H = \dfrac{v_{0y}^2}{2g}$

with no acceleration in the horizontal direction, $R=v_x \cdot t_{total}$

note $t_{total} = 2t_{top}$

with acceleration in the x-direction ...

$\Delta x = v_{0x} \cdot t_{total} + \dfrac{1}{2}a_x \cdot t_{total}^2$

$\Delta x = R + \dfrac{g}{8} \cdot \dfrac{4v_{0y}^2}{g^2} = R + \dfrac{v_{0y}^2}{2g} = R+H$
Hello,
You have not mentioned about any change occurred in height of projectile prior to acceleration and after acceleration. Would you explain me how $R=V_{0x} \cdot t_{total}=\frac{(V_0)^2}{g}\cdot \sin{(2\cdot \theta_0)}?$
 
Last edited:
$\Delta y = v_0 \sin{\theta_0} \cdot t - \dfrac{1}{2}gt^2$

the projectile lands at its starting height $\implies \Delta y = 0$

$0 = t\left(v_0 \sin{\theta_0} - \dfrac{1}{2}gt \right) \implies v_0\sin{\theta_0} = \dfrac{1}{2}gt \implies t = \dfrac{2v_0\sin{\theta_0}}{g}$

with no acceleration in the horizontal direction ...

$\Delta x = v_0\cos{\theta_0} \cdot t = v_0\cos{\theta_0} \cdot \dfrac{2v_0 \sin{\theta_0}}{g} = \dfrac{v_0^2 \cdot 2\sin{\theta_0}\cos{\theta_0}}{g}$

now, recall the double angle identity for sine ...
 
Dhamnekar Winod said:
Hello,
You have not mentioned about any change occurred in height of projectile prior to acceleration and after acceleration. Would you explain me how $R=V_{0x} \cdot t_{total}=\frac{(V_0)^2}{g}\cdot \sin{(2\cdot \theta_0)}?$
What do you mean by "prior to acceleration" and "after acceleration"? Isn't there always acceleration?
 
Country Boy said:
What do you mean by "prior to acceleration" and "after acceleration"? Isn't there always acceleration?
Hello,
Oh, I forgot that the acceleration is in horizontal direction. So there will not be any change in maximum height.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 21 ·
Replies
21
Views
3K
Replies
1
Views
2K
Replies
1
Views
6K
  • · Replies 2 ·
Replies
2
Views
1K