(conceptual) question about asymptotes

  • Thread starter Thread starter ozil
  • Start date Start date
  • Tags Tags
    Conceptual
Click For Summary
Asymptotes in rational functions are determined by the degrees of the numerator and denominator polynomials. A horizontal asymptote occurs when the degree of the numerator is equal to or less than that of the denominator, while a slant (or oblique) asymptote appears when the numerator's degree is exactly one higher than the denominator's. If the numerator's degree exceeds the denominator's by two or more, there is no straight line asymptote. To differentiate between horizontal and slant asymptotes, one can analyze the behavior of the function as x approaches infinity and evaluate limits. Understanding these concepts relies on calculus and algebraic principles.
ozil
Messages
9
Reaction score
1
I don't think this question requires the template. Basically can some one simply explain something to me regarding asymptotes:

The rules are that for horizontal the numerator has to have a higher power. For slant / oblique the numerator has to be just 1 higher than the denominator.

How do you not confuse the two? How can you tell which is which?
 
Mathematics news on Phys.org
I think one can derive those observations by finding out dy/dx and study its behavior as x or/and y tend to infinity. I do not think there can be any other explanation than mathematical based on calculus and algebra, which includes the process of evaluating limits. Also what you are telling may be necessary but not sufficient condition. Think over that too.
 
ozil said:
I don't think this question requires the template. Basically can some one simply explain something to me regarding asymptotes:

The rules are that for horizontal the numerator has to have a higher power.
From "numerator has to have a higher power" I assume you're talking about rational functions, which are quotients of polynomials. If the degree of the numerator (function on top) is one larger than the degree of the denominator (function on bottom), there is an oblique asymptote. (If the degree of the numerator is larger by two or more, there is no straight line asymptote.)

If the degree of the denominator is equal to the degree of the numerator, there is a horizontal asymptote that is either above or below the horizontal axis. Its equation is ##y = \frac{a_n}{b_n}##, where ##a_n## is the coefficient of the highest degree term in the numerator, and ##b_n## is the coefficient of the highest degree term in the denominator.

If the degree of the numerator is less than that of the denominator, the x-axis is the horizontal asymptote.
ozil said:
For slant / oblique the numerator has to be just 1 higher than the denominator.

How do you not confuse the two? How can you tell which is which?
 
Last edited:
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 4 ·
Replies
4
Views
5K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 2 ·
Replies
2
Views
17K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 12 ·
Replies
12
Views
5K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
5K
Replies
5
Views
2K