MHB Conditional Independence and Independence question

AI Thread Summary
The discussion revolves around the concepts of conditional independence and independence in probability theory. The user poses two questions regarding whether conditional independence of T and C given Z implies their unconditional independence, and vice versa. It is suggested that neither implication necessarily holds true, as the relationship between T and C can be defined independently when Z is not considered. The user seeks clarification on how to demonstrate these points mathematically. Understanding these nuances is crucial for accurately applying concepts of independence in statistical analysis.
akolman
Messages
1
Reaction score
0
Hello, I am stuck with the following question.

1. Suppose T ind. C |Z, does it follow that T ind. C ?

2. Suppose T ind. C , does it follow that T ind. C |Z?

I think both don't follow, but I don't know how to show it

Thanks in advance
 
Physics news on Phys.org
akolman said:
Hello, I am stuck with the following question.

1. Suppose T ind. C |Z, does it follow that T ind. C ?

2. Suppose T ind. C , does it follow that T ind. C |Z?

I think both don't follow, but I don't know how to show it

Thanks in advance

\(T\) and \(C\) independent given \(Z\) means:

\(P(T \wedge C|Z)=P(T|Z)P(C|Z)\)

Now we are free to define any relation we want between \(T\) and \(C\) if \(\neg Z\) is the case so that

\(P(T \wedge C) \ne P(T)P(C)\)

CB
 
Last edited:
I'm taking a look at intuitionistic propositional logic (IPL). Basically it exclude Double Negation Elimination (DNE) from the set of axiom schemas replacing it with Ex falso quodlibet: ⊥ → p for any proposition p (including both atomic and composite propositions). In IPL, for instance, the Law of Excluded Middle (LEM) p ∨ ¬p is no longer a theorem. My question: aside from the logic formal perspective, is IPL supposed to model/address some specific "kind of world" ? Thanks.
I was reading a Bachelor thesis on Peano Arithmetic (PA). PA has the following axioms (not including the induction schema): $$\begin{align} & (A1) ~~~~ \forall x \neg (x + 1 = 0) \nonumber \\ & (A2) ~~~~ \forall xy (x + 1 =y + 1 \to x = y) \nonumber \\ & (A3) ~~~~ \forall x (x + 0 = x) \nonumber \\ & (A4) ~~~~ \forall xy (x + (y +1) = (x + y ) + 1) \nonumber \\ & (A5) ~~~~ \forall x (x \cdot 0 = 0) \nonumber \\ & (A6) ~~~~ \forall xy (x \cdot (y + 1) = (x \cdot y) + x) \nonumber...
Back
Top