Since the deadline for the assignment in question has passed, I will make some more comments on solving the problem so others can use the information in the future.
We are given a matrix $A$:
$\displaystyle A = \left( \begin{array}{cccc} 1 & 2 & 5 & b \\ 4 & a & 17 & -22 \\ i_{31} & i_{32} & i_{33} & i_{34} \end{array}\right)$ and we know that it is row-equivalent to: $\displaystyle A =\left( \begin{array}{cccc} 1 & 2 & 0 & 3 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 \end{array}\right)$.
(a) Since the third row contains entries which are all 0, that means the third row is a linear combination of the first two. There are infinite possible third rows for matrix $A$ that reduce to all 0's, but here is one:
$\displaystyle A = \left( \begin{array}{cccc} 1 & 2 & 5 & b \\ 4 & a & 17 & -22 \\ 2 & 4 & 10 & 2b \end{array}\right)$
We can easily see that $R_3=2R_1$ in this example and we can easily reduce $R_3$ to all 0's.
(b) Let's start row-reducing $A$, letting the third row start with all 0's because we know it is a linear combination of the first two rows.
$\displaystyle A = \left( \begin{array}{cccc} 1 & 2 & 5 & b \\ 4 & a & 17 & -22 \\ 0 & 0 & 0 & 0 \end{array}\right) \sim \left( \begin{array}{cccc} 1 & 2 & 5 & b \\ 0 & a-8 & -3 & -22-4b \\ 0 & 0 & 0 & 0 \end{array}\right) \sim \left( \begin{array}{cccc} 1 & 2 & 5 & b \\ 0 & \frac{a-8}{-3} & 1 & \frac{-22-4b}{-3} \\ 0 & 0 & 0 & 0 \end{array}\right)$
Now we want to eliminate the term $i_{13}$ by multiplying using the replacement equation $R_1=-5R_2+R_1$. However we want the term $i_{12}$ to remain as 2, so the only way that's possible is if:
$$\frac{a-8}{-3}=0 \implies a=8$$
Using the same replacement of $R_1=-5R_2+R_1$ we get the relation that:
$$-5 \left( \frac{-22-4b}{-3} \right)+b=3 \implies b=-7$$
We can check this on
Wolfram by reducing the matrix: $\left( \begin{array}{cccc} 1 & 2 & 5 & -7 \\ 4 & 8 & 17 & -22 \\ 0 & 0 & 0 & 0 \end{array}\right)$ and we see that we have correctly found $a$ and $b$.
I will answer the other parts in a later post.