Conformal Mapping of Strip -1 < Im(z) < 1

Click For Summary

Discussion Overview

The discussion revolves around the image of the strip defined by $\{-1 < \text{Im} \ z < 1\}$ under the mapping $z \mapsto \frac{z}{z + i}$. Participants explore various methods to analyze this transformation, including calculations of specific lines within the strip and conditions on the resulting complex variable.

Discussion Character

  • Exploratory, Technical explanation, Debate/contested, Mathematical reasoning

Main Points Raised

  • Some participants propose analyzing the transformation by substituting specific values for the imaginary part of $z$, such as $y = -1$ and $y = 1$, to understand the mapping.
  • Others argue that choosing certain lines may not be valid due to being outside the defined strip or leading to undefined expressions, such as division by zero.
  • A participant suggests an alternative approach by expressing $z$ in terms of $w$ and finding conditions on $w$ to ensure the real part of the transformed variable lies within the desired range.
  • Another participant provides a detailed calculation of the real part of the transformed variable and identifies regions in the complex plane that correspond to the image of the strip.
  • There is a contention regarding the treatment of the imaginary unit $i$ in the calculations, with some participants questioning whether it was handled correctly in the transformations.
  • One participant expresses confusion about the radius of a circle derived from the conditions on $w$, indicating a need for clarification on the geometric interpretation of the results.

Areas of Agreement / Disagreement

Participants express differing views on the validity of specific approaches to the problem, with no consensus reached on the best method or the correctness of certain calculations. Disagreements arise particularly around the handling of the imaginary unit and the interpretation of the resulting regions in the complex plane.

Contextual Notes

Some calculations depend on the assumptions made about the lines chosen for analysis, and there are unresolved questions regarding the implications of multiplying by $i$ in the context of the transformation.

Dustinsfl
Messages
2,217
Reaction score
5
Describe the image of the strip $\{z: -1 < \text{Im} \ z < 1\}$ under the map $z\mapsto\dfrac{z}{z + i}$

So I know that $-\infty < x < \infty$ and $-1 < y < 1$.

Then
$$
\frac{x + yi}{x + i(y + 1)}
$$

Now if I take the the line y = -1, I have
$$
\frac{x-i}{x}
$$

Then find out what happens when y = 1.
Is this the correct way to do this type of problem?
 
Physics news on Phys.org
dwsmith said:
Describe the image of the strip $\{z: -1 < \text{Im} \ z < 1\}$ under the map $z\mapsto\dfrac{z}{z + i}$

So I know that $-\infty < x < \infty$ and $-1 < y < 1$.

Then
$$
\frac{x + yi}{x + i(y + 1)}
$$

Now if I take the the line y = -1, I have
$$
\frac{x-i}{x}
$$

Then find out what happens when y = 1.
Is this the correct way to do this type of problem?

I don't know if it's the only way to do this problem, but it's the way I would do it.
 
you can't choose that line for two reasons it is not in the strip which you are trying to map, second it had the denominator zero which is (0,-1)
think about the x-axis y=0
we will have \frac{x}{x+i} = \frac{x(x-i)}{x^2+1} = \frac{x^2}{x^2+1} - \frac{xi}{x^2+1} for all real numbers
the real part it is between (0,1)
I do not know if that help but i think that is the only way you take take some points and see where they will go
 
dwsmith said:
Describe the image of the strip $\{z: -1 < \text{Im} \ z < 1\}$ under the map $z\mapsto\dfrac{z}{z + i}$
If $w = \dfrac z{z+i}$ then $z = \dfrac{iw}{1-w}$. So we want to find conditions on $w$ to ensure that $-1 < \text{Re}\,\dfrac w{1-w} < 1.$

Let $w = u+iv$. Then $$\frac w{1-w} = \frac{u+iv}{1-u-iv} = \frac{(u+iv)(1-u+iv)}{(1-u-iv)(1-u+iv)}.$$ The real part of that is $$\frac{u(1-u)-v^2}{(1-u)^2+v^2}.$$ You need to find the region in which that fraction lies between –1 and +1.

[sp]I make the answer to be the region outside the circle of radius 1/4 centred at $w=3/4$, and to the left of the vertical line through $w=1$.[/sp]
 
Opalg said:
If $w = \dfrac z{z+i}$ then $z = \dfrac{iw}{1-w}$. So we want to find conditions on $w$ to ensure that $-1 < \text{Re}\,\dfrac w{1-w} < 1.$

Let $w = u+iv$. Then $$\frac w{1-w} = \frac{u+iv}{1-u-iv} = \frac{(u+iv)(1-u+iv)}{(1-u-iv)(1-u+iv)}.$$ The real part of that is $$\frac{u(1-u)-v^2}{(1-u)^2+v^2}.$$ You need to find the region in which that fraction lies between –1 and +1.

[sp]I make the answer to be the region outside the circle of radius 1/4 centred at $w=3/4$, and to the left of the vertical line through $w=1$.[/sp]
I think you lost your i in the numerator. $iw = ui - v$

So I have
$$
\frac{-v+i(u-u^2-v^2)}{(1-u)^2+v}
$$
So for
$$
-1<\frac{-v}{(1-u)^2+v}\Leftrightarrow \frac{1}{4}<\left(v-\frac{1}{2}\right)^2+(1-u)^2
$$
and for
$$
1<\frac{-v}{(1-u)^2+v}\Leftrightarrow \frac{1}{4}<\left(v+\frac{1}{2}\right)^2+(1-u)^2
$$

So it is the two regions outside of the the circles of radius 1/4 centered at $\left(1,\pm\frac{1}{2}\right)$
 
Last edited:
dwsmith said:
I think you lost your i in the numerator.
I don't think so. The problem asked for the image of the strip $\{z: -1 < \text{Im} \, z < 1\}$. Instead of taking the imaginary part of $z$, I took the real part of $iz$, which amounts to the same thing.
 
Opalg said:
I don't think so. The problem asked for the image of the strip $\{z: -1 < \text{Im} \, z < 1\}$. Instead of taking the imaginary part of $z$, I took the real part of $iz$, which amounts to the same thing.

Since you multiplied z by i, should we have had $\dfrac{-w}{1-w}$ then too?
 
I have the $u<1$ and $\frac{1}{16}<\left(u-\frac{3}{4}\right)^2+v^2$. I don't see how you obtained the radius to be 1/4.
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K