I Conformally related metrics have the same null geodesics

etotheipi
Homework Statement:: i) If ##\bar{g} = \Omega^2 g## for some positive function ##\Omega##, show that ##\bar{g}## and ##g## have the same null geodesics.

ii) Let ##\psi## solve ##g^{ab} \nabla_a \nabla_b \psi + \xi R \psi = 0##. Determine ##\xi## such that ##\bar{\psi} = \Omega^p \psi## for some ##p## solves the equation in a spacetime with metric ##\bar{g} = \Omega^2 g## if ##\psi## solves the equation in a spacetime with metric ##g##.
Relevant Equations:: N/A

A conformal transformation doesn't change the null cones of the metric, so if ##n^a## is a null vector of ##g## then it is also a null vector of ##\bar{g}##. So it's necessary to show that ##n^a \bar{\nabla}_a n^b = 0 \implies n^a \nabla_a n^b = \alpha n^b## where ##\nabla_a## and ##\bar{\nabla}_a## are the covariant derivative operators adapted to ##g## and ##\bar{g}## respectively. We have\begin{align*}

\bar{\Gamma}^i_{kl} &= \frac{1}{2} \bar{g}^{im} (\partial_l \bar{g}_{mk} + \partial_k \bar{g}_{ml} - \partial_m \bar{g}_{kl}) \\

&= \frac{1}{2} \Omega^{-2} g^{im}(\Omega^2 \left[ \partial_l g_{mk} + \partial_k g_{ml} - \partial_m g_{kl}\right] + 2\Omega [g_{mk} \partial_l \Omega + g_{ml} \partial_k \Omega - g_{kl} \partial_m \Omega]) \\

&= \Gamma^{i}_{kl} + \Omega^{-1} (\delta^i_k \partial_l \Omega + \delta^i_l \partial_k \Omega - g^{im} g_{kl} \partial_m \Omega)

\end{align*}It follows that\begin{align*}

n^a \bar{\nabla}_a n^b &= n^a (\partial_a n^b + \bar{\Gamma}^b_{ac} n^c) \\

&= n^a\left( \partial_a n^b + \Gamma^b_{ac} n^c \right) + n^a n^c \Omega^{-1} \left( \delta^b_a \partial_c \Omega + \delta^b_c \partial_a \Omega - g^{bm}g_{ac} \partial_m \Omega \right) \\

&= n^a \nabla_a n^b + n^a n^c \Omega^{-1} \left( 2 \delta^b_a \partial_c \Omega - g^{bm}g_{ac} \partial_m \Omega \right)

\end{align*}I can't see how to tidy up the right hand side; a hint would be appreciated. Thanks!
 
Physics news on Phys.org
The last term in the parenthesis of the last expression becomes zero when contracted with ##n^a n^c## due to ##n## being a null vector. The other term in the parenthesis is proportional to ##n^b## (also when contracted with ##n^a n^c##).

Edit: You'll obtain
$$
n^a \bar\nabla_a n^b = n^a \nabla_a n^b + n^b n^a \partial_a \ln(\Omega^2).
$$
 
  • Like
Likes strangerep and etotheipi
Thanks! I see, ##n^b n^a \partial_a \mathrm{ln}(\Omega^2) = 2 \Omega^{-1} n^b n^a \partial_a \Omega =2\Omega^{-1} n^c n^a \delta^b_c \partial_a \Omega## which under the replacement ##a \leftrightarrow c## gives the first term in my OP. And as you said the second contains ##n^a n^c g_{ac} = n^a n_a = 0## since ##n## is null, so vanishes. And that's it, because we can identify the scalar ##\alpha = n^a \partial_a \mathrm{ln}(\Omega^2)##.

I'll have a go at part ii) probably tomorrow. :smile:
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...

Similar threads

Replies
16
Views
3K
Replies
9
Views
1K
Replies
11
Views
2K
Replies
8
Views
2K
Replies
3
Views
2K
Replies
766
Views
737K
Back
Top