I Conformally related metrics have the same null geodesics

etotheipi
Homework Statement:: i) If ##\bar{g} = \Omega^2 g## for some positive function ##\Omega##, show that ##\bar{g}## and ##g## have the same null geodesics.

ii) Let ##\psi## solve ##g^{ab} \nabla_a \nabla_b \psi + \xi R \psi = 0##. Determine ##\xi## such that ##\bar{\psi} = \Omega^p \psi## for some ##p## solves the equation in a spacetime with metric ##\bar{g} = \Omega^2 g## if ##\psi## solves the equation in a spacetime with metric ##g##.
Relevant Equations:: N/A

A conformal transformation doesn't change the null cones of the metric, so if ##n^a## is a null vector of ##g## then it is also a null vector of ##\bar{g}##. So it's necessary to show that ##n^a \bar{\nabla}_a n^b = 0 \implies n^a \nabla_a n^b = \alpha n^b## where ##\nabla_a## and ##\bar{\nabla}_a## are the covariant derivative operators adapted to ##g## and ##\bar{g}## respectively. We have\begin{align*}

\bar{\Gamma}^i_{kl} &= \frac{1}{2} \bar{g}^{im} (\partial_l \bar{g}_{mk} + \partial_k \bar{g}_{ml} - \partial_m \bar{g}_{kl}) \\

&= \frac{1}{2} \Omega^{-2} g^{im}(\Omega^2 \left[ \partial_l g_{mk} + \partial_k g_{ml} - \partial_m g_{kl}\right] + 2\Omega [g_{mk} \partial_l \Omega + g_{ml} \partial_k \Omega - g_{kl} \partial_m \Omega]) \\

&= \Gamma^{i}_{kl} + \Omega^{-1} (\delta^i_k \partial_l \Omega + \delta^i_l \partial_k \Omega - g^{im} g_{kl} \partial_m \Omega)

\end{align*}It follows that\begin{align*}

n^a \bar{\nabla}_a n^b &= n^a (\partial_a n^b + \bar{\Gamma}^b_{ac} n^c) \\

&= n^a\left( \partial_a n^b + \Gamma^b_{ac} n^c \right) + n^a n^c \Omega^{-1} \left( \delta^b_a \partial_c \Omega + \delta^b_c \partial_a \Omega - g^{bm}g_{ac} \partial_m \Omega \right) \\

&= n^a \nabla_a n^b + n^a n^c \Omega^{-1} \left( 2 \delta^b_a \partial_c \Omega - g^{bm}g_{ac} \partial_m \Omega \right)

\end{align*}I can't see how to tidy up the right hand side; a hint would be appreciated. Thanks!
 
Physics news on Phys.org
The last term in the parenthesis of the last expression becomes zero when contracted with ##n^a n^c## due to ##n## being a null vector. The other term in the parenthesis is proportional to ##n^b## (also when contracted with ##n^a n^c##).

Edit: You'll obtain
$$
n^a \bar\nabla_a n^b = n^a \nabla_a n^b + n^b n^a \partial_a \ln(\Omega^2).
$$
 
  • Like
Likes strangerep and etotheipi
Thanks! I see, ##n^b n^a \partial_a \mathrm{ln}(\Omega^2) = 2 \Omega^{-1} n^b n^a \partial_a \Omega =2\Omega^{-1} n^c n^a \delta^b_c \partial_a \Omega## which under the replacement ##a \leftrightarrow c## gives the first term in my OP. And as you said the second contains ##n^a n^c g_{ac} = n^a n_a = 0## since ##n## is null, so vanishes. And that's it, because we can identify the scalar ##\alpha = n^a \partial_a \mathrm{ln}(\Omega^2)##.

I'll have a go at part ii) probably tomorrow. :smile:
 
From $$0 = \delta(g^{\alpha\mu}g_{\mu\nu}) = g^{\alpha\mu} \delta g_{\mu\nu} + g_{\mu\nu} \delta g^{\alpha\mu}$$ we have $$g^{\alpha\mu} \delta g_{\mu\nu} = -g_{\mu\nu} \delta g^{\alpha\mu} \,\, . $$ Multiply both sides by ##g_{\alpha\beta}## to get $$\delta g_{\beta\nu} = -g_{\alpha\beta} g_{\mu\nu} \delta g^{\alpha\mu} \qquad(*)$$ (This is Dirac's eq. (26.9) in "GTR".) On the other hand, the variation ##\delta g^{\alpha\mu} = \bar{g}^{\alpha\mu} - g^{\alpha\mu}## should be a tensor...
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...

Similar threads

Replies
16
Views
4K
Replies
9
Views
1K
Replies
11
Views
3K
Replies
8
Views
2K
Replies
3
Views
2K
Replies
766
Views
738K
Back
Top