I Conformally related metrics have the same null geodesics

etotheipi
Homework Statement:: i) If ##\bar{g} = \Omega^2 g## for some positive function ##\Omega##, show that ##\bar{g}## and ##g## have the same null geodesics.

ii) Let ##\psi## solve ##g^{ab} \nabla_a \nabla_b \psi + \xi R \psi = 0##. Determine ##\xi## such that ##\bar{\psi} = \Omega^p \psi## for some ##p## solves the equation in a spacetime with metric ##\bar{g} = \Omega^2 g## if ##\psi## solves the equation in a spacetime with metric ##g##.
Relevant Equations:: N/A

A conformal transformation doesn't change the null cones of the metric, so if ##n^a## is a null vector of ##g## then it is also a null vector of ##\bar{g}##. So it's necessary to show that ##n^a \bar{\nabla}_a n^b = 0 \implies n^a \nabla_a n^b = \alpha n^b## where ##\nabla_a## and ##\bar{\nabla}_a## are the covariant derivative operators adapted to ##g## and ##\bar{g}## respectively. We have\begin{align*}

\bar{\Gamma}^i_{kl} &= \frac{1}{2} \bar{g}^{im} (\partial_l \bar{g}_{mk} + \partial_k \bar{g}_{ml} - \partial_m \bar{g}_{kl}) \\

&= \frac{1}{2} \Omega^{-2} g^{im}(\Omega^2 \left[ \partial_l g_{mk} + \partial_k g_{ml} - \partial_m g_{kl}\right] + 2\Omega [g_{mk} \partial_l \Omega + g_{ml} \partial_k \Omega - g_{kl} \partial_m \Omega]) \\

&= \Gamma^{i}_{kl} + \Omega^{-1} (\delta^i_k \partial_l \Omega + \delta^i_l \partial_k \Omega - g^{im} g_{kl} \partial_m \Omega)

\end{align*}It follows that\begin{align*}

n^a \bar{\nabla}_a n^b &= n^a (\partial_a n^b + \bar{\Gamma}^b_{ac} n^c) \\

&= n^a\left( \partial_a n^b + \Gamma^b_{ac} n^c \right) + n^a n^c \Omega^{-1} \left( \delta^b_a \partial_c \Omega + \delta^b_c \partial_a \Omega - g^{bm}g_{ac} \partial_m \Omega \right) \\

&= n^a \nabla_a n^b + n^a n^c \Omega^{-1} \left( 2 \delta^b_a \partial_c \Omega - g^{bm}g_{ac} \partial_m \Omega \right)

\end{align*}I can't see how to tidy up the right hand side; a hint would be appreciated. Thanks!
 
Physics news on Phys.org
The last term in the parenthesis of the last expression becomes zero when contracted with ##n^a n^c## due to ##n## being a null vector. The other term in the parenthesis is proportional to ##n^b## (also when contracted with ##n^a n^c##).

Edit: You'll obtain
$$
n^a \bar\nabla_a n^b = n^a \nabla_a n^b + n^b n^a \partial_a \ln(\Omega^2).
$$
 
  • Like
Likes strangerep and etotheipi
Thanks! I see, ##n^b n^a \partial_a \mathrm{ln}(\Omega^2) = 2 \Omega^{-1} n^b n^a \partial_a \Omega =2\Omega^{-1} n^c n^a \delta^b_c \partial_a \Omega## which under the replacement ##a \leftrightarrow c## gives the first term in my OP. And as you said the second contains ##n^a n^c g_{ac} = n^a n_a = 0## since ##n## is null, so vanishes. And that's it, because we can identify the scalar ##\alpha = n^a \partial_a \mathrm{ln}(\Omega^2)##.

I'll have a go at part ii) probably tomorrow. :smile:
 
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
I started reading a National Geographic article related to the Big Bang. It starts these statements: Gazing up at the stars at night, it’s easy to imagine that space goes on forever. But cosmologists know that the universe actually has limits. First, their best models indicate that space and time had a beginning, a subatomic point called a singularity. This point of intense heat and density rapidly ballooned outward. My first reaction was that this is a layman's approximation to...
So, to calculate a proper time of a worldline in SR using an inertial frame is quite easy. But I struggled a bit using a "rotating frame metric" and now I'm not sure whether I'll do it right. Couls someone point me in the right direction? "What have you tried?" Well, trying to help truly absolute layppl with some variation of a "Circular Twin Paradox" not using an inertial frame of reference for whatevere reason. I thought it would be a bit of a challenge so I made a derivation or...

Similar threads

Replies
16
Views
3K
Replies
9
Views
1K
Replies
11
Views
2K
Replies
8
Views
2K
Replies
3
Views
2K
Replies
766
Views
737K
Back
Top