- #1

chroot

Staff Emeritus

Science Advisor

Gold Member

- 10,226

- 34

## Main Question or Discussion Point

**Please go to this post**for help with the current version of LaTeX used at Physics Forums.

**Note:**while the thread that follows has become outdated, many of the examples it contains are still relevant.

Physicsforums.com is proud to introduce the addition of

**LaTeX mathematical typesetting**to our forum software!

LaTeX is a professional-grade general typesetting system that centers around very pleasing mathematical presentation. Mathematical expressions are written in a markup style somewhat similar to HTML.

You may include LaTeX graphics in any post here on physicsforums.com (but not in private messages).

To include a LaTeX graphic, simply include your LaTeX code within the tags [ tex ] [ / tex ] or [ itex ] [ / itex ] for inline.

**The real tags do not include spaces.**

For example, the code

Code:

`[ tex ] a^x_n [ /tex ]`

Note that you can click on any LaTeX image and see a popup containing the code for the image.

A pdf file of the most useful LaTeX commands, symbols, and constructs is provided here:

https://www.physicsforums.com/misc/howtolatex.pdf

More symbol reference:

http://amath.colorado.edu/documentation/LaTeX/Symbols.pdf

A bit more information on the amsmath package is available here:

http://www.cds.caltech.edu/~dunbar/docs/amsldoc.pdf [Broken]

Below, I'm providing some example graphics demonstrating a variety of techniques. Click on each to view its source code.

[tex]

\frac{1}{2}

[/tex]

[tex]

R^a{}_{bcd}

[/tex]

[tex]

\nabla \times C

[/tex]

[tex]

\mathbb{RC}

[/tex]

[tex]\lambda_j = \vec{\lambda} \cdot \vec{e}_j[/tex]

[tex]\lambda_j = \mathbf{\lambda} \cdot \mathbf{e}_j[/tex]

[tex]

v(t) = v_0 + \frac{1}{2} a t^2

[/tex]

[tex]

\gamma \equiv \frac{1}{\sqrt{1 - v^2/c^2}}

[/tex]

[tex]

\ddot{x} = \frac {d^2x} {dt^2}

[/tex]

[tex]

\overline{x}

\hat{x}

\check{x}

\tilde{x}

\acute{x}

\grave{x}

\dot{x}

\ddot{x}

\breve{x}

\bar{x}

\vec{x}

\underline{x}

[/tex]

[tex]

\begin{align*}

ab\\

a b\\

a\! b\\

a\, b\\

a\: b\\

a\; b\\

\end{align*}

[/tex]

[tex]

\begin{multline*}

a + b + c + d + e + f\\

+g+h+i+j+k+l+m+n

\end{multline*}

[/tex]

[tex]

\begin{gather*}

a_1 = b_1 + c_1\\

a_2 = b_2 + c_2 - d_2 + e_2

\end{gather*}

[/tex]

[tex]

e^x = \sum_{n=0}^\infty \frac{x^n}{n!} = \lim_{n\rightarrow\infty} (1+x/n)^n

[/tex]

[tex]

\int_{0}^{1} x dx = \left[ \frac{1}{2}x^2 \right]_{0}^{1} = \frac{1}{2}

[/tex]

[tex]

L = \int_a^b \left( g_{\it ij} \dot u^i \dot u^j \right)^{1/2} dt

[/tex]

[tex]

\iiint f(x,y,z)\,dx\,dy\,dz

[/tex]

[tex]

\lim_{\substack{x\rightarrow 0\\y\rightarrow 0}} f(x,y)

[/tex]

[tex]

\idotsint_\textrm{paths} \exp{(iS(x,\dot{x})/\hbar)}\, \mathcal{D}x

[/tex]

[tex]

A \alpha B \beta \Gamma \gamma \Delta \delta \dots \Phi \phi X \chi \Psi \psi \Omega \omega

[/tex]

[tex]

\Gamma^l_{ki} = \frac{1}{2} g^{lj} (\partial_k g_{ij} + \partial_i g_{jk} - \partial_j g_{ki})

[/tex]

[tex]

\sigma_{3} = \left(

\begin{array}{cc}

1 & 0\\

0 & -1

\end{array}

\right)

[/tex]

[tex]

\begin{align*}

u &= \ln x \quad & dv &= x\,dx \\

du &= \mbox{$\frac{1}{x}\,dx$} & v &= \mbox{$\frac{1}{2} x^2$}

\end{align*}

[/tex]

[tex]

\newcommand{\pd}[3]{ \frac{ \partial^{#3}{#1} }{ \partial {#2}^{#3} } }

i \hbar \pd{\Psi}{t}{} =

- \frac{\hbar^2}{2 m} \ \pd{\Psi}{x}{2} + V \Psi

[/tex]

[tex]

\newcommand{\mean}[1]{{<\!\!{#1}\!\!>}}

\newcommand{\braket}[2]{{<\!\!{#1|#2}\!\!>}}

\newcommand{\braketop}[3]{{<\!\!{#1|\hat{#2}|#3}\!\!>}}

\braket{\phi}{\psi} \equiv \int \phi^*(x) \psi(x)\,dx

[/tex]

[tex]

\begin{array}{l | c|c|c|c |} \ &\overline{A}\,\overline{B}&A\,\overline{B}&\overline{A}\, B&A\, B\\

\hline

\overline{C}&0&1&0&0\\

\hline C&1&0&1&1\\

\hline

\end{array}

[/tex]

[tex]

\begin{equation*}

\begin{split}

\tau &= \tau_1+\tau_2 = \sqrt{{\Delta t_1}^2-{\Delta x_1}^2}+

\sqrt{{\Delta t_2}^2-{\Delta x_2}^2} \\

&= \sqrt{(5-0)^2-(4-0)^2}+\sqrt{(10-5)^2-(0-4)^2}\\

&= 3+3 = 6

\end{split}

\end{equation*}

[/tex]

Whenever you want to include a graphic on the same line with your text, like [itex]C H_4[/itex] or [itex]G_\textrm{diffeo}[/itex] or [itex]y = mx + b[/itex], you should use [ itex ]...[ /itex ] instead of [ tex ]...[ /tex ]. The "i" means "inline."

Click on each of the examples above to "learn by example."

If you have questions or comments about this site addition, you are welcome to post them here!

Good luck, and enjoy the system. Please test here: http://at.org/~cola/tex2img/index.php [Broken]

- Warren

Last edited by a moderator: