- #1

- 315

- 15

Hello! I thought that in spontaneous emission (say for an atom with 2 energy levels) we have the electron in the excited state and then it decays to the ground state emitting a photon at the resonance frequency. However I saw the attached figure, which introduces Mollow triplet. I understand the math of it, and how you go from normal energy levels to dressed states (within Jaynes-Cummings model), but I am not sure I understand physically what is going on. If we start in an atomic excited state, we are in a linear combination of dressed states. The atom can spontaneously decay in one of the 4 ways shown in the figure. But this means that after the atom decays (and we can measure the emitted photon), we still have 50% chances to find it in an excited atomic state (it will decay to a dressed state, which on resonance is an equal linear combination of ground and excited atomic states). I am not sure I understand this. How can we still have a chance of finding the atom in the excited state, even after a decay?