Confused by the relationship of work and kinetic energy

Click For Summary
SUMMARY

The relationship between work and kinetic energy is clarified through the equations W = F * s and Ekin = 1/2 * m * v2. The factor of 1/2 in the kinetic energy equation arises from the integration of acceleration over distance, specifically when considering average velocity during constant acceleration. The confusion stems from the distinction between instantaneous speed in work calculations and final speed in kinetic energy calculations. Understanding these relationships is crucial for accurate application in physics.

PREREQUISITES
  • Understanding of Newton's laws of motion
  • Familiarity with basic calculus, particularly integration
  • Knowledge of units of measurement in physics, specifically Joules (J)
  • Concept of average velocity in the context of constant acceleration
NEXT STEPS
  • Study the principles of integration in physics, focusing on applications in motion
  • Learn about the derivation of kinematic equations under constant acceleration
  • Explore the concept of work-energy theorem in classical mechanics
  • Investigate the differences between instantaneous and average quantities in physics
USEFUL FOR

Students of physics, educators teaching mechanics, and anyone seeking a deeper understanding of the relationship between work and kinetic energy in classical mechanics.

Oleiv
Messages
1
Reaction score
0
So the equation for work is W = F * s
F = m * a, so W = m * a * s
Transferring this to units of measurement gives us: J = kg * m * s-2 * m
Or simplified: J = kg * m2 * s-2
Transferring back to units of quantity: W = m * v2
How can that be correct? Obviously Ekin = 1/2 * m * v2. Where did that 1/2 go? Or is W =/= Ekin? Am I making some other kind of mistake?
 
Physics news on Phys.org
Oleiv said:
Where did that 1/2 go?
It's the rules of Integration. Integrate xdx and you get x2/2
Graphically, it's the area of the v/t triangle or the F/x triangle etc etc.
 
  • Like
Likes   Reactions: DrClaude
Oleiv said:
So the equation for work is W = F * s
F = m * a, so W = m * a * s
Transferring this to units of measurement gives us: J = kg * m * s-2 * m
Or simplified: J = kg * m2 * s-2
Transferring back to units of quantity: W = m * v2
How can that be correct? Obviously Ekin = 1/2 * m * v2. Where did that 1/2 go? Or is W =/= Ekin? Am I making some other kind of mistake?

The ##\frac12## is effectively a conversion factor based on your choice of units. In any case, ##\frac12## is dimensionless and doesn't affect the dimensions or units in an equation.

For example, the area of a circle is ##A = \pi r^2##. Both quantities have dimensions of ##L^2## or SI units of ##m^2##. ##\pi## is a dimensionless, unit-less factor based on the geometry of the circle.
 
  • Like
Likes   Reactions: DrClaude
Oleiv said:
Transferring back to units of quantity: W = m * v2
How can that be correct? Obviously Ekin = 1/2 * m * v2. Where did that 1/2 go? Or is W =/= Ekin? Am I making some other kind of mistake?
To add a somewhat more physical explanation to the very good posts of @sophiecentaur and @PeroK, when you write the ##v## in the two equations is not the same. In ##E_\mathrm{kin}##, it is the final speed, when the work has stopped, while in the equation for work, the speed will change while work is applied. In the case of constant acceleration, we can write ##W = m \langle v \rangle^2 = mv_f^2/2##, with ##\langle v \rangle## the average speed while the work is applied.

Edit: this assumes also that the speed was initially 0. Otherwise, we would have to write the equations in terms of ##\Delta v## and ##\Delta E_\mathrm{kin}##.
 
Oleiv said:
So the equation for work is W = F * s
F = m * a, so W = m * a * s
Transferring this to units of measurement gives us: J = kg * m * s-2 * m
Or simplified: J = kg * m2 * s-2
Transferring back to units of quantity: W = m * v2
How can that be correct? Obviously Ekin = 1/2 * m * v2. Where did that 1/2 go? Or is W =/= Ekin? Am I making some other kind of mistake?
Dimension analysis is not the same as doing integration (or algebra if you assume constant acceleration). That's the mistake.

At constant acceleration, s=1/2at2

That's where the 1/2 comes from.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K