Confusion about applying Faraday's law to a circuit

Click For Summary

Homework Help Overview

The discussion revolves around applying Faraday's law to a circuit, specifically examining the conditions under which the line integral of the electric field around a closed loop can equal zero. Participants explore the implications of magnetic flux and the nature of electric fields in the context of inductors and circuit loops.

Discussion Character

  • Conceptual clarification, Assumption checking

Approaches and Questions Raised

  • Participants analyze different loops in the circuit and their corresponding equations derived from Faraday's law. Questions arise regarding the conditions under which the integral of the electric field can be zero, particularly in the presence of nonconservative electric fields.

Discussion Status

Some participants have provided guidance on the interpretation of the equations and the conditions for magnetic flux. There is an ongoing exploration of the implications of having zero magnetic flux in certain loops, with multiple interpretations being considered.

Contextual Notes

There are mentions of missing terms in the equations and the necessity of clarifying the presence or absence of magnetic flux in the circuit. The discussion reflects on the assumptions made about the nature of the electric fields involved.

eyeweyew
Messages
35
Reaction score
6
Homework Statement
Analyzing circuit with Faraday's law
Relevant Equations
$$\oint_C {E \cdot d\ell} = -\frac{d}{{dt}} \int_S {B_n dA} = -\frac{d\Phi_{B}}{{dt}}$$
If all electric fields generated by electrostatic charges, then we know $$\oint_C {E \cdot d\ell} = 0$$ so in the following circuit, $$\oint_C {E \cdot d\ell} = -V+IR = 0$$

rl-parallel3.jpg


In cases where not all electric fields generated by electrostatic charges, then according Faraday's law, we know $$\oint_C {E \cdot d\ell} = -\frac{d}{{dt}} \int_S {B_n dA} = -\frac{d\Phi_{B}}{{dt}}$$

So in the following circuit, we have for loop2:
$$\oint_C {E \cdot d\ell} = -V+I_tR_t=-\frac{d\Phi_{B}}{{dt}}=-L\frac{dI_L}{{dt}}$$

and we have for loop3:
$$\oint_C {E \cdot d\ell} = -I_1R_1=-\frac{d\Phi_{B}}{{dt}}=-L\frac{dI_L}{{dt}}$$

However, for loop1 we have:
$$\oint_C {E \cdot d\ell} = -V+I_1R_1=-\frac{d\Phi_{B}}{{dt}}=0$$

which is just like all electric fields generated by electrostatic charges but it is not the case in this circuit and in loop1. So does that mean $$\oint_C {E \cdot d\ell}$$ can be equal 0 even not all electric fields are generated by electrostatic charges around the closed loop?

rl-parallel1.jpg
 
Physics news on Phys.org
There is no magnetic flux in your circuits.
##\Phi_B = 0## so ##-\frac{d\Phi_{B}}{{dt}}=0## and thereby ##\oint_C {E \cdot d\ell}=0##

Your equation for loop 1 misses a term ##+I_tR_t##

##\ ##
 
eyeweyew said:
So in the following circuit, we have for loop2: $$\oint_C {E \cdot d\ell} = -V+I_tR_t=-\frac{d\Phi_{B}}{{dt}}=-L\frac{dI_L}{{dt}}$$ and we have for loop3:
$$\oint_C {E \cdot d\ell} = -I_1R_1=-\frac{d\Phi_{B}}{{dt}}=-L\frac{dI_L}{{dt}}$$
These look correct for setting up the loop equations according to Faraday's law.

I think it's important to emphasize that when setting up the equations this way, whenever the closed path of integration of the E-field includes the inductor, the path is taken to stay within the conducting wire of the inductor. So, the path stays within the helical windings of the inductor. It is this part of the path where the B-field of the inductor produces the magnetic flux through the path and this is the reason for the appearance of the term ##-L\frac{dI_L}{dt}## on the right side of the loop equation for loops 2 and 3.
eyeweyew said:
However, for loop1 we have: $$\oint_C {E \cdot d\ell} = -V+I_1R_1=-\frac{d\Phi_{B}}{{dt}}=0$$ which is just like all electric fields generated by electrostatic charges but it is not the case in this circuit and in loop1. So does that mean $$\oint_C {E \cdot d\ell}$$ can be equal 0 even not all electric fields are generated by electrostatic charges around the closed loop?
Yes. If the electric field is nonconservative, there can nevertheless be closed paths for which $$\oint_C {E \cdot d\ell} = 0.$$ This will be true for any path having zero magnetic flux through it. For example, suppose there is an increasing magnetic field into the page that is confined to the gray area shown below.

1724976312248.png

The induced electric field is nonconservative. But ##\oint_C {E \cdot d\ell} = 0## for the brown path since there is no magnetic flux through the brown path.

For loop 1 in your circuit, there is no magnetic flux through the loop.
 
  • Like
Likes   Reactions: eyeweyew and nasu
BvU said:
There is no magnetic flux in your circuits.
##\Phi_B = 0## so ##-\frac{d\Phi_{B}}{{dt}}=0## and thereby ##\oint_C {E \cdot d\ell}=0##

Your equation for loop 1 misses a term ##+I_tR_t##

##\ ##
Yes, you are right. The correct equation for loop1 should be: $$\oint_C {E \cdot d\ell} = -V+I_tR_t+I_1R_1=-\frac{d\Phi_{B}}{{dt}}=0$$
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
10
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
7
Views
1K
Replies
16
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
Replies
2
Views
1K