High School Confusion about the radius unit vector in spherical coordinates

Click For Summary
The discussion revolves around the role of the radius unit vector in spherical coordinates and its necessity alongside angle vectors. It highlights that while the radius (r) represents the distance from the origin, the unit vector (hat r) provides direction, which is essential for defining a point in three-dimensional space. The example of an electric field from a point charge illustrates that using spherical coordinates simplifies mathematical expressions and visualizations. It clarifies that r is a scalar magnitude, while the vector with direction is represented as vec r, which can also be expressed using angles. Ultimately, the radius unit vector is crucial for accurately describing positions and directions in spherical coordinates.
random_soldier
Messages
80
Reaction score
10
If the radius unit vector is giving us some direction in spherical coordinates, why do we need the angle vectors or vice versa?
 
Mathematics news on Phys.org
Think about it. In three dimensions you need three quantities to define a point in space. They could be {x,y,z} or {r,θ,φ}. If I were to tell you that a fly is at position ##1.5~\hat r## meters from the corner of a room (the origin), where would you look to find it?
 
I mean I suppose in that case I would have to tilt my head by a certain θ and a certain Φ to see the fly but then my question is why the need to have r as a vector? I thought the whole point in spherical coordinates as opposed to cartesian was the fact that r was just the distance from the center and to actually arrive at the required point meant offsetting by a certain θ and a certain Φ.
 
random_soldier said:
I mean I suppose in that case I would have to tilt my head by a certain θ and a certain Φ to see the fly but then my question is why the need to have r as a vector?
Because it makes the mathematical description in some cases easier to formulate and manipulate. Take the example of a point charge ##Q## at the origin. The electric field due to this charge can be written in spherical coordinated as$$\vec E(\vec r)=\frac{Q}{4 \pi \epsilon_0}\frac{\vec r}{r^3}.$$The same field in Cartesian coordinates is$$\vec E(x,y,z)=\frac{Q}{4 \pi \epsilon_0}\frac{x~\hat x + y~\hat y+z~\hat z}{(x^2+y^2+z^2)^{3/2}}.$$The top expression is easier to visualize as a radial field and often easier to work with if one has to take dot or cross products with other vectors or use vector calculus.
 
  • Like
Likes random_soldier
Pardon my curtness but I think I am now just confused about what exactly the radius unit vector is giving the direction of. May I please know?
 
random_soldier said:
Pardon my curtness but I think I am now just confused about what exactly the radius unit vector is giving the direction of. May I please know?
In the example of the electric field that I gave you, imagine a line from the origin where charge ##Q## is located to point ##P## where you want to find the field. The unit vector ##\hat r## is along this line and points from the origin to point ##P##. Its direction of course depends on where ##P## is. You can specify that direction in the Cartesian representation and write $$\hat r=\frac{x~\hat x + y~\hat y+z~\hat z}{(x^2+y^2+z^2)^{1/2}}.$$You tell me where point ##P## is, i.e. you give me ##x##, ##y##, and ##z## and I will be able to draw ##\hat r##. In terms of the standard spherical angles ##\theta## and ##\phi## that give an alternate way to find point ##P##, you have ##\hat r=\sin\theta \cos\phi~\hat x+\sin \theta \sin \phi~\hat y+\cos\theta ~\hat z##. You give me the angles and I will be able to draw ##\hat r##.
 
  • Like
Likes random_soldier
By definition you will never need any other basis vector in spherical coordinates when you express the position vector or any other vectors pointing radially. However, this is not the only possible vector. For example, your fly may be moving non-radially, which will give it a velocity vector with non-radial components. Same thing with the velocity vector of a planet orbiting a star. Since the orbit is typically almost circular, the radial component is small and the tangential component large.
 
Last edited:
  • Like
Likes random_soldier
random_soldier said:
I mean I suppose in that case I would have to tilt my head by a certain θ and a certain Φ to see the fly but then my question is why the need to have r as a vector?
Can you clarify what you mean? 'r' is not a vector. It is a real number indicating magnitude and has no direction. The vector with a direction is ##\vec r##, whose direction can be defined using a unit direction vector ##\vec u = \vec r / \mid \vec r \mid##. The unit vector direction ##\vec u ## can also be described using angles off of a coordinate system.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
26
Views
4K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K