I Confusion over applying the 1st uniqueness theorem to charged regions

AI Thread Summary
The first uniqueness theorem does not apply in regions with charge density, as Poisson's equation replaces Laplace's equation, which affects the implications of local extrema. For example, a charged metal sphere creates a local maximum in potential, contradicting the 'no local extrema' principle of Laplace's equation. The first uniqueness theorem pertains to boundary conditions and charge distribution, while the second uniqueness theorem focuses on the total charge of conductors. Despite these differences, a specific charge distribution and boundary conditions still yield a unique potential distribution. The Dirichlet boundary value problem for the Poisson equation maintains a unique solution.
phantomvommand
Messages
287
Reaction score
39
1. For regions that contain charge density, does the 1st uniqueness theorem still apply?

2. For regions that contain charge density, does the 'no local extrema' implication of Laplace's equation still apply? I think not, since the relevant equation now is Poisson's equation. Furthermore, considering a charged metal sphere and a spherical boundary surface surrounding it, there is a local maxima at the sphere. Nonetheless, the result that "given a specific charge distribution and specific boundary conditions, there is a specific potential distribution" still holds.

3. What is the main difference between the 1st uniqueness theorem and the 2nd uniqueness theorem? Is it that the 1st uniqueness theorem relates to boundary and charge distribution, while the 2nd uniqueness theorem deals with total charge on conductors?

Thanks for all the help
 
Physics news on Phys.org
I know nothing about charges but try to answer:)
If ##\Delta u\ge 0## in a domain ##D\subset\mathbb{R}^m## then
$$\sup_{x\in D} u(x)=\sup_{x\in\partial D}u(x)$$
And yes, Dirichlet boundary value problem for the Poisson equation has a unique solution
This is informal for details see textbooks in PDE
 
Thread 'Gauss' law seems to imply instantaneous electric field'
Imagine a charged sphere at the origin connected through an open switch to a vertical grounded wire. We wish to find an expression for the horizontal component of the electric field at a distance ##\mathbf{r}## from the sphere as it discharges. By using the Lorenz gauge condition: $$\nabla \cdot \mathbf{A} + \frac{1}{c^2}\frac{\partial \phi}{\partial t}=0\tag{1}$$ we find the following retarded solutions to the Maxwell equations If we assume that...
Hello! Let's say I have a cavity resonant at 10 GHz with a Q factor of 1000. Given the Lorentzian shape of the cavity, I can also drive the cavity at, say 100 MHz. Of course the response will be very very weak, but non-zero given that the Loretzian shape never really reaches zero. I am trying to understand how are the magnetic and electric field distributions of the field at 100 MHz relative to the ones at 10 GHz? In particular, if inside the cavity I have some structure, such as 2 plates...
Back
Top