Hello guys, since I am new at sums and multivariable calculus I faced a problem when I stumbled upon this: [tex] \sum_{r=0}^{k} \binom{n}{4r+1} x^{n-4r-1} y^{4r+1} = \sum_{r=0}^{b} \binom{n}{4r+3} x^{n-4r-3} y^{4r+3} [/tex] Well, the problem is that I don't know if it's possible to put a limit in every part of the equation and then convert it to an integral (I am trying to prove that [tex] \forall x , y \in \mathbb{R}, \quad \exists n \in \mathbb{N} , n \in \mathbb{N} , n \neq 0 [/tex] so that the relation holds). Can I do it or does it violate any rule? And if it is possible to do it how would the multivariable integration be? (If you want the relations between n, k, b just ask)(adsbygoogle = window.adsbygoogle || []).push({});

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Confusion with integration of sums

Loading...

Similar Threads for Confusion integration sums |
---|

I How to derive this log related integration formula? |

I An integration Solution |

B I Feel Weird Using Integral Tables |

B Methods of integration: direct and indirect substitution |

Confusion about the "now-you-see-me-now-you-don't" radian |

**Physics Forums | Science Articles, Homework Help, Discussion**